calib3d.hpp 178 KB
Newer Older
郝文豪's avatar
郝文豪 committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                          License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#ifndef OPENCV_CALIB3D_HPP
#define OPENCV_CALIB3D_HPP

#include "opencv2/core.hpp"
#include "opencv2/features2d.hpp"
#include "opencv2/core/affine.hpp"

/**
  @defgroup calib3d Camera Calibration and 3D Reconstruction

The functions in this section use a so-called pinhole camera model. In this model, a scene view is
formed by projecting 3D points into the image plane using a perspective transformation.

\f[s  \; m' = A [R|t] M'\f]

or

\f[s  \vecthree{u}{v}{1} = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}
\begin{bmatrix}
r_{11} & r_{12} & r_{13} & t_1  \\
r_{21} & r_{22} & r_{23} & t_2  \\
r_{31} & r_{32} & r_{33} & t_3
\end{bmatrix}
\begin{bmatrix}
X \\
Y \\
Z \\
1
\end{bmatrix}\f]

where:

-   \f$(X, Y, Z)\f$ are the coordinates of a 3D point in the world coordinate space
-   \f$(u, v)\f$ are the coordinates of the projection point in pixels
-   \f$A\f$ is a camera matrix, or a matrix of intrinsic parameters
-   \f$(cx, cy)\f$ is a principal point that is usually at the image center
-   \f$fx, fy\f$ are the focal lengths expressed in pixel units.

Thus, if an image from the camera is scaled by a factor, all of these parameters should be scaled
(multiplied/divided, respectively) by the same factor. The matrix of intrinsic parameters does not
depend on the scene viewed. So, once estimated, it can be re-used as long as the focal length is
fixed (in case of zoom lens). The joint rotation-translation matrix \f$[R|t]\f$ is called a matrix of
extrinsic parameters. It is used to describe the camera motion around a static scene, or vice versa,
rigid motion of an object in front of a still camera. That is, \f$[R|t]\f$ translates coordinates of a
point \f$(X, Y, Z)\f$ to a coordinate system, fixed with respect to the camera. The transformation above
is equivalent to the following (when \f$z \ne 0\f$ ):

\f[\begin{array}{l}
\vecthree{x}{y}{z} = R  \vecthree{X}{Y}{Z} + t \\
x' = x/z \\
y' = y/z \\
u = f_x*x' + c_x \\
v = f_y*y' + c_y
\end{array}\f]

The following figure illustrates the pinhole camera model.

![Pinhole camera model](pics/pinhole_camera_model.png)

Real lenses usually have some distortion, mostly radial distortion and slight tangential distortion.
So, the above model is extended as:

\f[\begin{array}{l}
\vecthree{x}{y}{z} = R  \vecthree{X}{Y}{Z} + t \\
x' = x/z \\
y' = y/z \\
x'' = x'  \frac{1 + k_1 r^2 + k_2 r^4 + k_3 r^6}{1 + k_4 r^2 + k_5 r^4 + k_6 r^6} + 2 p_1 x' y' + p_2(r^2 + 2 x'^2) + s_1 r^2 + s_2 r^4 \\
y'' = y'  \frac{1 + k_1 r^2 + k_2 r^4 + k_3 r^6}{1 + k_4 r^2 + k_5 r^4 + k_6 r^6} + p_1 (r^2 + 2 y'^2) + 2 p_2 x' y' + s_3 r^2 + s_4 r^4 \\
\text{where} \quad r^2 = x'^2 + y'^2  \\
u = f_x*x'' + c_x \\
v = f_y*y'' + c_y
\end{array}\f]

\f$k_1\f$, \f$k_2\f$, \f$k_3\f$, \f$k_4\f$, \f$k_5\f$, and \f$k_6\f$ are radial distortion coefficients. \f$p_1\f$ and \f$p_2\f$ are
tangential distortion coefficients. \f$s_1\f$, \f$s_2\f$, \f$s_3\f$, and \f$s_4\f$, are the thin prism distortion
coefficients. Higher-order coefficients are not considered in OpenCV.

The next figures show two common types of radial distortion: barrel distortion (typically \f$ k_1 < 0 \f$) and pincushion distortion (typically \f$ k_1 > 0 \f$).

![](pics/distortion_examples.png)
![](pics/distortion_examples2.png)

In some cases the image sensor may be tilted in order to focus an oblique plane in front of the
camera (Scheimpfug condition). This can be useful for particle image velocimetry (PIV) or
triangulation with a laser fan. The tilt causes a perspective distortion of \f$x''\f$ and
\f$y''\f$. This distortion can be modelled in the following way, see e.g. @cite Louhichi07.

\f[\begin{array}{l}
s\vecthree{x'''}{y'''}{1} =
\vecthreethree{R_{33}(\tau_x, \tau_y)}{0}{-R_{13}(\tau_x, \tau_y)}
{0}{R_{33}(\tau_x, \tau_y)}{-R_{23}(\tau_x, \tau_y)}
{0}{0}{1} R(\tau_x, \tau_y) \vecthree{x''}{y''}{1}\\
u = f_x*x''' + c_x \\
v = f_y*y''' + c_y
\end{array}\f]

where the matrix \f$R(\tau_x, \tau_y)\f$ is defined by two rotations with angular parameter \f$\tau_x\f$
and \f$\tau_y\f$, respectively,

\f[
R(\tau_x, \tau_y) =
\vecthreethree{\cos(\tau_y)}{0}{-\sin(\tau_y)}{0}{1}{0}{\sin(\tau_y)}{0}{\cos(\tau_y)}
\vecthreethree{1}{0}{0}{0}{\cos(\tau_x)}{\sin(\tau_x)}{0}{-\sin(\tau_x)}{\cos(\tau_x)} =
\vecthreethree{\cos(\tau_y)}{\sin(\tau_y)\sin(\tau_x)}{-\sin(\tau_y)\cos(\tau_x)}
{0}{\cos(\tau_x)}{\sin(\tau_x)}
{\sin(\tau_y)}{-\cos(\tau_y)\sin(\tau_x)}{\cos(\tau_y)\cos(\tau_x)}.
\f]

In the functions below the coefficients are passed or returned as

\f[(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6 [, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f]

vector. That is, if the vector contains four elements, it means that \f$k_3=0\f$ . The distortion
coefficients do not depend on the scene viewed. Thus, they also belong to the intrinsic camera
parameters. And they remain the same regardless of the captured image resolution. If, for example, a
camera has been calibrated on images of 320 x 240 resolution, absolutely the same distortion
coefficients can be used for 640 x 480 images from the same camera while \f$f_x\f$, \f$f_y\f$, \f$c_x\f$, and
\f$c_y\f$ need to be scaled appropriately.

The functions below use the above model to do the following:

-   Project 3D points to the image plane given intrinsic and extrinsic parameters.
-   Compute extrinsic parameters given intrinsic parameters, a few 3D points, and their
projections.
-   Estimate intrinsic and extrinsic camera parameters from several views of a known calibration
pattern (every view is described by several 3D-2D point correspondences).
-   Estimate the relative position and orientation of the stereo camera "heads" and compute the
*rectification* transformation that makes the camera optical axes parallel.

@note
    -   A calibration sample for 3 cameras in horizontal position can be found at
        opencv_source_code/samples/cpp/3calibration.cpp
    -   A calibration sample based on a sequence of images can be found at
        opencv_source_code/samples/cpp/calibration.cpp
    -   A calibration sample in order to do 3D reconstruction can be found at
        opencv_source_code/samples/cpp/build3dmodel.cpp
    -   A calibration example on stereo calibration can be found at
        opencv_source_code/samples/cpp/stereo_calib.cpp
    -   A calibration example on stereo matching can be found at
        opencv_source_code/samples/cpp/stereo_match.cpp
    -   (Python) A camera calibration sample can be found at
        opencv_source_code/samples/python/calibrate.py

  @{
    @defgroup calib3d_fisheye Fisheye camera model

    Definitions: Let P be a point in 3D of coordinates X in the world reference frame (stored in the
    matrix X) The coordinate vector of P in the camera reference frame is:

    \f[Xc = R X + T\f]

    where R is the rotation matrix corresponding to the rotation vector om: R = rodrigues(om); call x, y
    and z the 3 coordinates of Xc:

    \f[x = Xc_1 \\ y = Xc_2 \\ z = Xc_3\f]

    The pinhole projection coordinates of P is [a; b] where

    \f[a = x / z \ and \ b = y / z \\ r^2 = a^2 + b^2 \\ \theta = atan(r)\f]

    Fisheye distortion:

    \f[\theta_d = \theta (1 + k_1 \theta^2 + k_2 \theta^4 + k_3 \theta^6 + k_4 \theta^8)\f]

    The distorted point coordinates are [x'; y'] where

    \f[x' = (\theta_d / r) a \\ y' = (\theta_d / r) b \f]

    Finally, conversion into pixel coordinates: The final pixel coordinates vector [u; v] where:

    \f[u = f_x (x' + \alpha y') + c_x \\
    v = f_y y' + c_y\f]

    @defgroup calib3d_c C API

  @}
 */

namespace cv
{

//! @addtogroup calib3d
//! @{

//! type of the robust estimation algorithm
enum { LMEDS  = 4, //!< least-median of squares algorithm
       RANSAC = 8, //!< RANSAC algorithm
       RHO    = 16 //!< RHO algorithm
     };

enum SolvePnPMethod {
    SOLVEPNP_ITERATIVE   = 0,
    SOLVEPNP_EPNP        = 1, //!< EPnP: Efficient Perspective-n-Point Camera Pose Estimation @cite lepetit2009epnp
    SOLVEPNP_P3P         = 2, //!< Complete Solution Classification for the Perspective-Three-Point Problem @cite gao2003complete
    SOLVEPNP_DLS         = 3, //!< A Direct Least-Squares (DLS) Method for PnP  @cite hesch2011direct
    SOLVEPNP_UPNP        = 4, //!< Exhaustive Linearization for Robust Camera Pose and Focal Length Estimation @cite penate2013exhaustive
    SOLVEPNP_AP3P        = 5, //!< An Efficient Algebraic Solution to the Perspective-Three-Point Problem @cite Ke17
    SOLVEPNP_IPPE        = 6, //!< Infinitesimal Plane-Based Pose Estimation @cite Collins14 \n
                              //!< Object points must be coplanar.
    SOLVEPNP_IPPE_SQUARE = 7, //!< Infinitesimal Plane-Based Pose Estimation @cite Collins14 \n
                              //!< This is a special case suitable for marker pose estimation.\n
                              //!< 4 coplanar object points must be defined in the following order:
                              //!<   - point 0: [-squareLength / 2,  squareLength / 2, 0]
                              //!<   - point 1: [ squareLength / 2,  squareLength / 2, 0]
                              //!<   - point 2: [ squareLength / 2, -squareLength / 2, 0]
                              //!<   - point 3: [-squareLength / 2, -squareLength / 2, 0]
#ifndef CV_DOXYGEN
    SOLVEPNP_MAX_COUNT        //!< Used for count
#endif
};

enum { CALIB_CB_ADAPTIVE_THRESH = 1,
       CALIB_CB_NORMALIZE_IMAGE = 2,
       CALIB_CB_FILTER_QUADS    = 4,
       CALIB_CB_FAST_CHECK      = 8,
       CALIB_CB_EXHAUSTIVE      = 16,
       CALIB_CB_ACCURACY        = 32
     };

enum { CALIB_CB_SYMMETRIC_GRID  = 1,
       CALIB_CB_ASYMMETRIC_GRID = 2,
       CALIB_CB_CLUSTERING      = 4
     };

enum { CALIB_NINTRINSIC          = 18,
       CALIB_USE_INTRINSIC_GUESS = 0x00001,
       CALIB_FIX_ASPECT_RATIO    = 0x00002,
       CALIB_FIX_PRINCIPAL_POINT = 0x00004,
       CALIB_ZERO_TANGENT_DIST   = 0x00008,
       CALIB_FIX_FOCAL_LENGTH    = 0x00010,
       CALIB_FIX_K1              = 0x00020,
       CALIB_FIX_K2              = 0x00040,
       CALIB_FIX_K3              = 0x00080,
       CALIB_FIX_K4              = 0x00800,
       CALIB_FIX_K5              = 0x01000,
       CALIB_FIX_K6              = 0x02000,
       CALIB_RATIONAL_MODEL      = 0x04000,
       CALIB_THIN_PRISM_MODEL    = 0x08000,
       CALIB_FIX_S1_S2_S3_S4     = 0x10000,
       CALIB_TILTED_MODEL        = 0x40000,
       CALIB_FIX_TAUX_TAUY       = 0x80000,
       CALIB_USE_QR              = 0x100000, //!< use QR instead of SVD decomposition for solving. Faster but potentially less precise
       CALIB_FIX_TANGENT_DIST    = 0x200000,
       // only for stereo
       CALIB_FIX_INTRINSIC       = 0x00100,
       CALIB_SAME_FOCAL_LENGTH   = 0x00200,
       // for stereo rectification
       CALIB_ZERO_DISPARITY      = 0x00400,
       CALIB_USE_LU              = (1 << 17), //!< use LU instead of SVD decomposition for solving. much faster but potentially less precise
       CALIB_USE_EXTRINSIC_GUESS = (1 << 22)  //!< for stereoCalibrate
     };

//! the algorithm for finding fundamental matrix
enum { FM_7POINT = 1, //!< 7-point algorithm
       FM_8POINT = 2, //!< 8-point algorithm
       FM_LMEDS  = 4, //!< least-median algorithm. 7-point algorithm is used.
       FM_RANSAC = 8  //!< RANSAC algorithm. It needs at least 15 points. 7-point algorithm is used.
     };

enum HandEyeCalibrationMethod
{
    CALIB_HAND_EYE_TSAI         = 0, //!< A New Technique for Fully Autonomous and Efficient 3D Robotics Hand/Eye Calibration @cite Tsai89
    CALIB_HAND_EYE_PARK         = 1, //!< Robot Sensor Calibration: Solving AX = XB on the Euclidean Group @cite Park94
    CALIB_HAND_EYE_HORAUD       = 2, //!< Hand-eye Calibration @cite Horaud95
    CALIB_HAND_EYE_ANDREFF      = 3, //!< On-line Hand-Eye Calibration @cite Andreff99
    CALIB_HAND_EYE_DANIILIDIS   = 4  //!< Hand-Eye Calibration Using Dual Quaternions @cite Daniilidis98
};


/** @brief Converts a rotation matrix to a rotation vector or vice versa.

@param src Input rotation vector (3x1 or 1x3) or rotation matrix (3x3).
@param dst Output rotation matrix (3x3) or rotation vector (3x1 or 1x3), respectively.
@param jacobian Optional output Jacobian matrix, 3x9 or 9x3, which is a matrix of partial
derivatives of the output array components with respect to the input array components.

\f[\begin{array}{l} \theta \leftarrow norm(r) \\ r  \leftarrow r/ \theta \\ R =  \cos{\theta} I + (1- \cos{\theta} ) r r^T +  \sin{\theta} \vecthreethree{0}{-r_z}{r_y}{r_z}{0}{-r_x}{-r_y}{r_x}{0} \end{array}\f]

Inverse transformation can be also done easily, since

\f[\sin ( \theta ) \vecthreethree{0}{-r_z}{r_y}{r_z}{0}{-r_x}{-r_y}{r_x}{0} = \frac{R - R^T}{2}\f]

A rotation vector is a convenient and most compact representation of a rotation matrix (since any
rotation matrix has just 3 degrees of freedom). The representation is used in the global 3D geometry
optimization procedures like calibrateCamera, stereoCalibrate, or solvePnP .
 */
CV_EXPORTS_W void Rodrigues( InputArray src, OutputArray dst, OutputArray jacobian = noArray() );



/** Levenberg-Marquardt solver. Starting with the specified vector of parameters it
    optimizes the target vector criteria "err"
    (finds local minima of each target vector component absolute value).

    When needed, it calls user-provided callback.
*/
class CV_EXPORTS LMSolver : public Algorithm
{
public:
    class CV_EXPORTS Callback
    {
    public:
        virtual ~Callback() {}
        /**
         computes error and Jacobian for the specified vector of parameters

         @param param the current vector of parameters
         @param err output vector of errors: err_i = actual_f_i - ideal_f_i
         @param J output Jacobian: J_ij = d(err_i)/d(param_j)

         when J=noArray(), it means that it does not need to be computed.
         Dimensionality of error vector and param vector can be different.
         The callback should explicitly allocate (with "create" method) each output array
         (unless it's noArray()).
        */
        virtual bool compute(InputArray param, OutputArray err, OutputArray J) const = 0;
    };

    /**
       Runs Levenberg-Marquardt algorithm using the passed vector of parameters as the start point.
       The final vector of parameters (whether the algorithm converged or not) is stored at the same
       vector. The method returns the number of iterations used. If it's equal to the previously specified
       maxIters, there is a big chance the algorithm did not converge.

       @param param initial/final vector of parameters.

       Note that the dimensionality of parameter space is defined by the size of param vector,
       and the dimensionality of optimized criteria is defined by the size of err vector
       computed by the callback.
    */
    virtual int run(InputOutputArray param) const = 0;

    /**
       Sets the maximum number of iterations
       @param maxIters the number of iterations
    */
    virtual void setMaxIters(int maxIters) = 0;
    /**
       Retrieves the current maximum number of iterations
    */
    virtual int getMaxIters() const = 0;

    /**
       Creates Levenberg-Marquard solver

       @param cb callback
       @param maxIters maximum number of iterations that can be further
         modified using setMaxIters() method.
    */
    static Ptr<LMSolver> create(const Ptr<LMSolver::Callback>& cb, int maxIters);
    static Ptr<LMSolver> create(const Ptr<LMSolver::Callback>& cb, int maxIters, double eps);
};



/** @example samples/cpp/tutorial_code/features2D/Homography/pose_from_homography.cpp
An example program about pose estimation from coplanar points

Check @ref tutorial_homography "the corresponding tutorial" for more details
*/

/** @brief Finds a perspective transformation between two planes.

@param srcPoints Coordinates of the points in the original plane, a matrix of the type CV_32FC2
or vector\<Point2f\> .
@param dstPoints Coordinates of the points in the target plane, a matrix of the type CV_32FC2 or
a vector\<Point2f\> .
@param method Method used to compute a homography matrix. The following methods are possible:
-   **0** - a regular method using all the points, i.e., the least squares method
-   **RANSAC** - RANSAC-based robust method
-   **LMEDS** - Least-Median robust method
-   **RHO** - PROSAC-based robust method
@param ransacReprojThreshold Maximum allowed reprojection error to treat a point pair as an inlier
(used in the RANSAC and RHO methods only). That is, if
\f[\| \texttt{dstPoints} _i -  \texttt{convertPointsHomogeneous} ( \texttt{H} * \texttt{srcPoints} _i) \|_2  >  \texttt{ransacReprojThreshold}\f]
then the point \f$i\f$ is considered as an outlier. If srcPoints and dstPoints are measured in pixels,
it usually makes sense to set this parameter somewhere in the range of 1 to 10.
@param mask Optional output mask set by a robust method ( RANSAC or LMEDS ). Note that the input
mask values are ignored.
@param maxIters The maximum number of RANSAC iterations.
@param confidence Confidence level, between 0 and 1.

The function finds and returns the perspective transformation \f$H\f$ between the source and the
destination planes:

\f[s_i  \vecthree{x'_i}{y'_i}{1} \sim H  \vecthree{x_i}{y_i}{1}\f]

so that the back-projection error

\f[\sum _i \left ( x'_i- \frac{h_{11} x_i + h_{12} y_i + h_{13}}{h_{31} x_i + h_{32} y_i + h_{33}} \right )^2+ \left ( y'_i- \frac{h_{21} x_i + h_{22} y_i + h_{23}}{h_{31} x_i + h_{32} y_i + h_{33}} \right )^2\f]

is minimized. If the parameter method is set to the default value 0, the function uses all the point
pairs to compute an initial homography estimate with a simple least-squares scheme.

However, if not all of the point pairs ( \f$srcPoints_i\f$, \f$dstPoints_i\f$ ) fit the rigid perspective
transformation (that is, there are some outliers), this initial estimate will be poor. In this case,
you can use one of the three robust methods. The methods RANSAC, LMeDS and RHO try many different
random subsets of the corresponding point pairs (of four pairs each, collinear pairs are discarded), estimate the homography matrix
using this subset and a simple least-squares algorithm, and then compute the quality/goodness of the
computed homography (which is the number of inliers for RANSAC or the least median re-projection error for
LMeDS). The best subset is then used to produce the initial estimate of the homography matrix and
the mask of inliers/outliers.

Regardless of the method, robust or not, the computed homography matrix is refined further (using
inliers only in case of a robust method) with the Levenberg-Marquardt method to reduce the
re-projection error even more.

The methods RANSAC and RHO can handle practically any ratio of outliers but need a threshold to
distinguish inliers from outliers. The method LMeDS does not need any threshold but it works
correctly only when there are more than 50% of inliers. Finally, if there are no outliers and the
noise is rather small, use the default method (method=0).

The function is used to find initial intrinsic and extrinsic matrices. Homography matrix is
determined up to a scale. Thus, it is normalized so that \f$h_{33}=1\f$. Note that whenever an \f$H\f$ matrix
cannot be estimated, an empty one will be returned.

@sa
getAffineTransform, estimateAffine2D, estimateAffinePartial2D, getPerspectiveTransform, warpPerspective,
perspectiveTransform
 */
CV_EXPORTS_W Mat findHomography( InputArray srcPoints, InputArray dstPoints,
                                 int method = 0, double ransacReprojThreshold = 3,
                                 OutputArray mask=noArray(), const int maxIters = 2000,
                                 const double confidence = 0.995);

/** @overload */
CV_EXPORTS Mat findHomography( InputArray srcPoints, InputArray dstPoints,
                               OutputArray mask, int method = 0, double ransacReprojThreshold = 3 );

/** @brief Computes an RQ decomposition of 3x3 matrices.

@param src 3x3 input matrix.
@param mtxR Output 3x3 upper-triangular matrix.
@param mtxQ Output 3x3 orthogonal matrix.
@param Qx Optional output 3x3 rotation matrix around x-axis.
@param Qy Optional output 3x3 rotation matrix around y-axis.
@param Qz Optional output 3x3 rotation matrix around z-axis.

The function computes a RQ decomposition using the given rotations. This function is used in
decomposeProjectionMatrix to decompose the left 3x3 submatrix of a projection matrix into a camera
and a rotation matrix.

It optionally returns three rotation matrices, one for each axis, and the three Euler angles in
degrees (as the return value) that could be used in OpenGL. Note, there is always more than one
sequence of rotations about the three principal axes that results in the same orientation of an
object, e.g. see @cite Slabaugh . Returned tree rotation matrices and corresponding three Euler angles
are only one of the possible solutions.
 */
CV_EXPORTS_W Vec3d RQDecomp3x3( InputArray src, OutputArray mtxR, OutputArray mtxQ,
                                OutputArray Qx = noArray(),
                                OutputArray Qy = noArray(),
                                OutputArray Qz = noArray());

/** @brief Decomposes a projection matrix into a rotation matrix and a camera matrix.

@param projMatrix 3x4 input projection matrix P.
@param cameraMatrix Output 3x3 camera matrix K.
@param rotMatrix Output 3x3 external rotation matrix R.
@param transVect Output 4x1 translation vector T.
@param rotMatrixX Optional 3x3 rotation matrix around x-axis.
@param rotMatrixY Optional 3x3 rotation matrix around y-axis.
@param rotMatrixZ Optional 3x3 rotation matrix around z-axis.
@param eulerAngles Optional three-element vector containing three Euler angles of rotation in
degrees.

The function computes a decomposition of a projection matrix into a calibration and a rotation
matrix and the position of a camera.

It optionally returns three rotation matrices, one for each axis, and three Euler angles that could
be used in OpenGL. Note, there is always more than one sequence of rotations about the three
principal axes that results in the same orientation of an object, e.g. see @cite Slabaugh . Returned
tree rotation matrices and corresponding three Euler angles are only one of the possible solutions.

The function is based on RQDecomp3x3 .
 */
CV_EXPORTS_W void decomposeProjectionMatrix( InputArray projMatrix, OutputArray cameraMatrix,
                                             OutputArray rotMatrix, OutputArray transVect,
                                             OutputArray rotMatrixX = noArray(),
                                             OutputArray rotMatrixY = noArray(),
                                             OutputArray rotMatrixZ = noArray(),
                                             OutputArray eulerAngles =noArray() );

/** @brief Computes partial derivatives of the matrix product for each multiplied matrix.

@param A First multiplied matrix.
@param B Second multiplied matrix.
@param dABdA First output derivative matrix d(A\*B)/dA of size
\f$\texttt{A.rows*B.cols} \times {A.rows*A.cols}\f$ .
@param dABdB Second output derivative matrix d(A\*B)/dB of size
\f$\texttt{A.rows*B.cols} \times {B.rows*B.cols}\f$ .

The function computes partial derivatives of the elements of the matrix product \f$A*B\f$ with regard to
the elements of each of the two input matrices. The function is used to compute the Jacobian
matrices in stereoCalibrate but can also be used in any other similar optimization function.
 */
CV_EXPORTS_W void matMulDeriv( InputArray A, InputArray B, OutputArray dABdA, OutputArray dABdB );

/** @brief Combines two rotation-and-shift transformations.

@param rvec1 First rotation vector.
@param tvec1 First translation vector.
@param rvec2 Second rotation vector.
@param tvec2 Second translation vector.
@param rvec3 Output rotation vector of the superposition.
@param tvec3 Output translation vector of the superposition.
@param dr3dr1 Optional output derivative of rvec3 with regard to rvec1
@param dr3dt1 Optional output derivative of rvec3 with regard to tvec1
@param dr3dr2 Optional output derivative of rvec3 with regard to rvec2
@param dr3dt2 Optional output derivative of rvec3 with regard to tvec2
@param dt3dr1 Optional output derivative of tvec3 with regard to rvec1
@param dt3dt1 Optional output derivative of tvec3 with regard to tvec1
@param dt3dr2 Optional output derivative of tvec3 with regard to rvec2
@param dt3dt2 Optional output derivative of tvec3 with regard to tvec2

The functions compute:

\f[\begin{array}{l} \texttt{rvec3} =  \mathrm{rodrigues} ^{-1} \left ( \mathrm{rodrigues} ( \texttt{rvec2} )  \cdot \mathrm{rodrigues} ( \texttt{rvec1} ) \right )  \\ \texttt{tvec3} =  \mathrm{rodrigues} ( \texttt{rvec2} )  \cdot \texttt{tvec1} +  \texttt{tvec2} \end{array} ,\f]

where \f$\mathrm{rodrigues}\f$ denotes a rotation vector to a rotation matrix transformation, and
\f$\mathrm{rodrigues}^{-1}\f$ denotes the inverse transformation. See Rodrigues for details.

Also, the functions can compute the derivatives of the output vectors with regards to the input
vectors (see matMulDeriv ). The functions are used inside stereoCalibrate but can also be used in
your own code where Levenberg-Marquardt or another gradient-based solver is used to optimize a
function that contains a matrix multiplication.
 */
CV_EXPORTS_W void composeRT( InputArray rvec1, InputArray tvec1,
                             InputArray rvec2, InputArray tvec2,
                             OutputArray rvec3, OutputArray tvec3,
                             OutputArray dr3dr1 = noArray(), OutputArray dr3dt1 = noArray(),
                             OutputArray dr3dr2 = noArray(), OutputArray dr3dt2 = noArray(),
                             OutputArray dt3dr1 = noArray(), OutputArray dt3dt1 = noArray(),
                             OutputArray dt3dr2 = noArray(), OutputArray dt3dt2 = noArray() );

/** @brief Projects 3D points to an image plane.

@param objectPoints Array of object points, 3xN/Nx3 1-channel or 1xN/Nx1 3-channel (or
vector\<Point3f\> ), where N is the number of points in the view.
@param rvec Rotation vector. See Rodrigues for details.
@param tvec Translation vector.
@param cameraMatrix Camera matrix \f$A = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{_1}\f$ .
@param distCoeffs Input vector of distortion coefficients
\f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6 [, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$ of
4, 5, 8, 12 or 14 elements. If the vector is empty, the zero distortion coefficients are assumed.
@param imagePoints Output array of image points, 1xN/Nx1 2-channel, or
vector\<Point2f\> .
@param jacobian Optional output 2Nx(10+\<numDistCoeffs\>) jacobian matrix of derivatives of image
points with respect to components of the rotation vector, translation vector, focal lengths,
coordinates of the principal point and the distortion coefficients. In the old interface different
components of the jacobian are returned via different output parameters.
@param aspectRatio Optional "fixed aspect ratio" parameter. If the parameter is not 0, the
function assumes that the aspect ratio (*fx/fy*) is fixed and correspondingly adjusts the jacobian
matrix.

The function computes projections of 3D points to the image plane given intrinsic and extrinsic
camera parameters. Optionally, the function computes Jacobians - matrices of partial derivatives of
image points coordinates (as functions of all the input parameters) with respect to the particular
parameters, intrinsic and/or extrinsic. The Jacobians are used during the global optimization in
calibrateCamera, solvePnP, and stereoCalibrate . The function itself can also be used to compute a
re-projection error given the current intrinsic and extrinsic parameters.

@note By setting rvec=tvec=(0,0,0) or by setting cameraMatrix to a 3x3 identity matrix, or by
passing zero distortion coefficients, you can get various useful partial cases of the function. This
means that you can compute the distorted coordinates for a sparse set of points or apply a
perspective transformation (and also compute the derivatives) in the ideal zero-distortion setup.
 */
CV_EXPORTS_W void projectPoints( InputArray objectPoints,
                                 InputArray rvec, InputArray tvec,
                                 InputArray cameraMatrix, InputArray distCoeffs,
                                 OutputArray imagePoints,
                                 OutputArray jacobian = noArray(),
                                 double aspectRatio = 0 );

/** @example samples/cpp/tutorial_code/features2D/Homography/homography_from_camera_displacement.cpp
An example program about homography from the camera displacement

Check @ref tutorial_homography "the corresponding tutorial" for more details
*/

/** @brief Finds an object pose from 3D-2D point correspondences.
This function returns the rotation and the translation vectors that transform a 3D point expressed in the object
coordinate frame to the camera coordinate frame, using different methods:
- P3P methods (@ref SOLVEPNP_P3P, @ref SOLVEPNP_AP3P): need 4 input points to return a unique solution.
- @ref SOLVEPNP_IPPE Input points must be >= 4 and object points must be coplanar.
- @ref SOLVEPNP_IPPE_SQUARE Special case suitable for marker pose estimation.
Number of input points must be 4. Object points must be defined in the following order:
  - point 0: [-squareLength / 2,  squareLength / 2, 0]
  - point 1: [ squareLength / 2,  squareLength / 2, 0]
  - point 2: [ squareLength / 2, -squareLength / 2, 0]
  - point 3: [-squareLength / 2, -squareLength / 2, 0]
- for all the other flags, number of input points must be >= 4 and object points can be in any configuration.

@param objectPoints Array of object points in the object coordinate space, Nx3 1-channel or
1xN/Nx1 3-channel, where N is the number of points. vector\<Point3f\> can be also passed here.
@param imagePoints Array of corresponding image points, Nx2 1-channel or 1xN/Nx1 2-channel,
where N is the number of points. vector\<Point2f\> can be also passed here.
@param cameraMatrix Input camera matrix \f$A = \vecthreethree{fx}{0}{cx}{0}{fy}{cy}{0}{0}{1}\f$ .
@param distCoeffs Input vector of distortion coefficients
\f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6 [, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$ of
4, 5, 8, 12 or 14 elements. If the vector is NULL/empty, the zero distortion coefficients are
assumed.
@param rvec Output rotation vector (see @ref Rodrigues ) that, together with tvec, brings points from
the model coordinate system to the camera coordinate system.
@param tvec Output translation vector.
@param useExtrinsicGuess Parameter used for #SOLVEPNP_ITERATIVE. If true (1), the function uses
the provided rvec and tvec values as initial approximations of the rotation and translation
vectors, respectively, and further optimizes them.
@param flags Method for solving a PnP problem:
-   **SOLVEPNP_ITERATIVE** Iterative method is based on a Levenberg-Marquardt optimization. In
this case the function finds such a pose that minimizes reprojection error, that is the sum
of squared distances between the observed projections imagePoints and the projected (using
projectPoints ) objectPoints .
-   **SOLVEPNP_P3P** Method is based on the paper of X.S. Gao, X.-R. Hou, J. Tang, H.-F. Chang
"Complete Solution Classification for the Perspective-Three-Point Problem" (@cite gao2003complete).
In this case the function requires exactly four object and image points.
-   **SOLVEPNP_AP3P** Method is based on the paper of T. Ke, S. Roumeliotis
"An Efficient Algebraic Solution to the Perspective-Three-Point Problem" (@cite Ke17).
In this case the function requires exactly four object and image points.
-   **SOLVEPNP_EPNP** Method has been introduced by F. Moreno-Noguer, V. Lepetit and P. Fua in the
paper "EPnP: Efficient Perspective-n-Point Camera Pose Estimation" (@cite lepetit2009epnp).
-   **SOLVEPNP_DLS** Method is based on the paper of J. Hesch and S. Roumeliotis.
"A Direct Least-Squares (DLS) Method for PnP" (@cite hesch2011direct).
-   **SOLVEPNP_UPNP** Method is based on the paper of A. Penate-Sanchez, J. Andrade-Cetto,
F. Moreno-Noguer. "Exhaustive Linearization for Robust Camera Pose and Focal Length
Estimation" (@cite penate2013exhaustive). In this case the function also estimates the parameters \f$f_x\f$ and \f$f_y\f$
assuming that both have the same value. Then the cameraMatrix is updated with the estimated
focal length.
-   **SOLVEPNP_IPPE** Method is based on the paper of T. Collins and A. Bartoli.
"Infinitesimal Plane-Based Pose Estimation" (@cite Collins14). This method requires coplanar object points.
-   **SOLVEPNP_IPPE_SQUARE** Method is based on the paper of Toby Collins and Adrien Bartoli.
"Infinitesimal Plane-Based Pose Estimation" (@cite Collins14). This method is suitable for marker pose estimation.
It requires 4 coplanar object points defined in the following order:
  - point 0: [-squareLength / 2,  squareLength / 2, 0]
  - point 1: [ squareLength / 2,  squareLength / 2, 0]
  - point 2: [ squareLength / 2, -squareLength / 2, 0]
  - point 3: [-squareLength / 2, -squareLength / 2, 0]

The function estimates the object pose given a set of object points, their corresponding image
projections, as well as the camera matrix and the distortion coefficients, see the figure below
(more precisely, the X-axis of the camera frame is pointing to the right, the Y-axis downward
and the Z-axis forward).

![](pnp.jpg)

Points expressed in the world frame \f$ \bf{X}_w \f$ are projected into the image plane \f$ \left[ u, v \right] \f$
using the perspective projection model \f$ \Pi \f$ and the camera intrinsic parameters matrix \f$ \bf{A} \f$:

\f[
  \begin{align*}
  \begin{bmatrix}
  u \\
  v \\
  1
  \end{bmatrix} &=
  \bf{A} \hspace{0.1em} \Pi \hspace{0.2em} ^{c}\bf{M}_w
  \begin{bmatrix}
  X_{w} \\
  Y_{w} \\
  Z_{w} \\
  1
  \end{bmatrix} \\
  \begin{bmatrix}
  u \\
  v \\
  1
  \end{bmatrix} &=
  \begin{bmatrix}
  f_x & 0 & c_x \\
  0 & f_y & c_y \\
  0 & 0 & 1
  \end{bmatrix}
  \begin{bmatrix}
  1 & 0 & 0 & 0 \\
  0 & 1 & 0 & 0 \\
  0 & 0 & 1 & 0
  \end{bmatrix}
  \begin{bmatrix}
  r_{11} & r_{12} & r_{13} & t_x \\
  r_{21} & r_{22} & r_{23} & t_y \\
  r_{31} & r_{32} & r_{33} & t_z \\
  0 & 0 & 0 & 1
  \end{bmatrix}
  \begin{bmatrix}
  X_{w} \\
  Y_{w} \\
  Z_{w} \\
  1
  \end{bmatrix}
  \end{align*}
\f]

The estimated pose is thus the rotation (`rvec`) and the translation (`tvec`) vectors that allow transforming
a 3D point expressed in the world frame into the camera frame:

\f[
  \begin{align*}
  \begin{bmatrix}
  X_c \\
  Y_c \\
  Z_c \\
  1
  \end{bmatrix} &=
  \hspace{0.2em} ^{c}\bf{M}_w
  \begin{bmatrix}
  X_{w} \\
  Y_{w} \\
  Z_{w} \\
  1
  \end{bmatrix} \\
  \begin{bmatrix}
  X_c \\
  Y_c \\
  Z_c \\
  1
  \end{bmatrix} &=
  \begin{bmatrix}
  r_{11} & r_{12} & r_{13} & t_x \\
  r_{21} & r_{22} & r_{23} & t_y \\
  r_{31} & r_{32} & r_{33} & t_z \\
  0 & 0 & 0 & 1
  \end{bmatrix}
  \begin{bmatrix}
  X_{w} \\
  Y_{w} \\
  Z_{w} \\
  1
  \end{bmatrix}
  \end{align*}
\f]

@note
   -   An example of how to use solvePnP for planar augmented reality can be found at
        opencv_source_code/samples/python/plane_ar.py
   -   If you are using Python:
        - Numpy array slices won't work as input because solvePnP requires contiguous
        arrays (enforced by the assertion using cv::Mat::checkVector() around line 55 of
        modules/calib3d/src/solvepnp.cpp version 2.4.9)
        - The P3P algorithm requires image points to be in an array of shape (N,1,2) due
        to its calling of cv::undistortPoints (around line 75 of modules/calib3d/src/solvepnp.cpp version 2.4.9)
        which requires 2-channel information.
        - Thus, given some data D = np.array(...) where D.shape = (N,M), in order to use a subset of
        it as, e.g., imagePoints, one must effectively copy it into a new array: imagePoints =
        np.ascontiguousarray(D[:,:2]).reshape((N,1,2))
   -   The methods **SOLVEPNP_DLS** and **SOLVEPNP_UPNP** cannot be used as the current implementations are
       unstable and sometimes give completely wrong results. If you pass one of these two
       flags, **SOLVEPNP_EPNP** method will be used instead.
   -   The minimum number of points is 4 in the general case. In the case of **SOLVEPNP_P3P** and **SOLVEPNP_AP3P**
       methods, it is required to use exactly 4 points (the first 3 points are used to estimate all the solutions
       of the P3P problem, the last one is used to retain the best solution that minimizes the reprojection error).
   -   With **SOLVEPNP_ITERATIVE** method and `useExtrinsicGuess=true`, the minimum number of points is 3 (3 points
       are sufficient to compute a pose but there are up to 4 solutions). The initial solution should be close to the
       global solution to converge.
   -   With **SOLVEPNP_IPPE** input points must be >= 4 and object points must be coplanar.
   -   With **SOLVEPNP_IPPE_SQUARE** this is a special case suitable for marker pose estimation.
       Number of input points must be 4. Object points must be defined in the following order:
         - point 0: [-squareLength / 2,  squareLength / 2, 0]
         - point 1: [ squareLength / 2,  squareLength / 2, 0]
         - point 2: [ squareLength / 2, -squareLength / 2, 0]
         - point 3: [-squareLength / 2, -squareLength / 2, 0]
 */
CV_EXPORTS_W bool solvePnP( InputArray objectPoints, InputArray imagePoints,
                            InputArray cameraMatrix, InputArray distCoeffs,
                            OutputArray rvec, OutputArray tvec,
                            bool useExtrinsicGuess = false, int flags = SOLVEPNP_ITERATIVE );

/** @brief Finds an object pose from 3D-2D point correspondences using the RANSAC scheme.

@param objectPoints Array of object points in the object coordinate space, Nx3 1-channel or
1xN/Nx1 3-channel, where N is the number of points. vector\<Point3f\> can be also passed here.
@param imagePoints Array of corresponding image points, Nx2 1-channel or 1xN/Nx1 2-channel,
where N is the number of points. vector\<Point2f\> can be also passed here.
@param cameraMatrix Input camera matrix \f$A = \vecthreethree{fx}{0}{cx}{0}{fy}{cy}{0}{0}{1}\f$ .
@param distCoeffs Input vector of distortion coefficients
\f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6 [, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$ of
4, 5, 8, 12 or 14 elements. If the vector is NULL/empty, the zero distortion coefficients are
assumed.
@param rvec Output rotation vector (see @ref Rodrigues ) that, together with tvec, brings points from
the model coordinate system to the camera coordinate system.
@param tvec Output translation vector.
@param useExtrinsicGuess Parameter used for @ref SOLVEPNP_ITERATIVE. If true (1), the function uses
the provided rvec and tvec values as initial approximations of the rotation and translation
vectors, respectively, and further optimizes them.
@param iterationsCount Number of iterations.
@param reprojectionError Inlier threshold value used by the RANSAC procedure. The parameter value
is the maximum allowed distance between the observed and computed point projections to consider it
an inlier.
@param confidence The probability that the algorithm produces a useful result.
@param inliers Output vector that contains indices of inliers in objectPoints and imagePoints .
@param flags Method for solving a PnP problem (see @ref solvePnP ).

The function estimates an object pose given a set of object points, their corresponding image
projections, as well as the camera matrix and the distortion coefficients. This function finds such
a pose that minimizes reprojection error, that is, the sum of squared distances between the observed
projections imagePoints and the projected (using @ref projectPoints ) objectPoints. The use of RANSAC
makes the function resistant to outliers.

@note
   -   An example of how to use solvePNPRansac for object detection can be found at
        opencv_source_code/samples/cpp/tutorial_code/calib3d/real_time_pose_estimation/
   -   The default method used to estimate the camera pose for the Minimal Sample Sets step
       is #SOLVEPNP_EPNP. Exceptions are:
         - if you choose #SOLVEPNP_P3P or #SOLVEPNP_AP3P, these methods will be used.
         - if the number of input points is equal to 4, #SOLVEPNP_P3P is used.
   -   The method used to estimate the camera pose using all the inliers is defined by the
       flags parameters unless it is equal to #SOLVEPNP_P3P or #SOLVEPNP_AP3P. In this case,
       the method #SOLVEPNP_EPNP will be used instead.
 */
CV_EXPORTS_W bool solvePnPRansac( InputArray objectPoints, InputArray imagePoints,
                                  InputArray cameraMatrix, InputArray distCoeffs,
                                  OutputArray rvec, OutputArray tvec,
                                  bool useExtrinsicGuess = false, int iterationsCount = 100,
                                  float reprojectionError = 8.0, double confidence = 0.99,
                                  OutputArray inliers = noArray(), int flags = SOLVEPNP_ITERATIVE );

/** @brief Finds an object pose from 3 3D-2D point correspondences.

@param objectPoints Array of object points in the object coordinate space, 3x3 1-channel or
1x3/3x1 3-channel. vector\<Point3f\> can be also passed here.
@param imagePoints Array of corresponding image points, 3x2 1-channel or 1x3/3x1 2-channel.
 vector\<Point2f\> can be also passed here.
@param cameraMatrix Input camera matrix \f$A = \vecthreethree{fx}{0}{cx}{0}{fy}{cy}{0}{0}{1}\f$ .
@param distCoeffs Input vector of distortion coefficients
\f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6 [, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$ of
4, 5, 8, 12 or 14 elements. If the vector is NULL/empty, the zero distortion coefficients are
assumed.
@param rvecs Output rotation vectors (see @ref Rodrigues ) that, together with tvecs, brings points from
the model coordinate system to the camera coordinate system. A P3P problem has up to 4 solutions.
@param tvecs Output translation vectors.
@param flags Method for solving a P3P problem:
-   **SOLVEPNP_P3P** Method is based on the paper of X.S. Gao, X.-R. Hou, J. Tang, H.-F. Chang
"Complete Solution Classification for the Perspective-Three-Point Problem" (@cite gao2003complete).
-   **SOLVEPNP_AP3P** Method is based on the paper of T. Ke and S. Roumeliotis.
"An Efficient Algebraic Solution to the Perspective-Three-Point Problem" (@cite Ke17).

The function estimates the object pose given 3 object points, their corresponding image
projections, as well as the camera matrix and the distortion coefficients.

@note
The solutions are sorted by reprojection errors (lowest to highest).
 */
CV_EXPORTS_W int solveP3P( InputArray objectPoints, InputArray imagePoints,
                           InputArray cameraMatrix, InputArray distCoeffs,
                           OutputArrayOfArrays rvecs, OutputArrayOfArrays tvecs,
                           int flags );

/** @brief Refine a pose (the translation and the rotation that transform a 3D point expressed in the object coordinate frame
to the camera coordinate frame) from a 3D-2D point correspondences and starting from an initial solution.

@param objectPoints Array of object points in the object coordinate space, Nx3 1-channel or 1xN/Nx1 3-channel,
where N is the number of points. vector\<Point3f\> can also be passed here.
@param imagePoints Array of corresponding image points, Nx2 1-channel or 1xN/Nx1 2-channel,
where N is the number of points. vector\<Point2f\> can also be passed here.
@param cameraMatrix Input camera matrix \f$A = \vecthreethree{fx}{0}{cx}{0}{fy}{cy}{0}{0}{1}\f$ .
@param distCoeffs Input vector of distortion coefficients
\f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6 [, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$ of
4, 5, 8, 12 or 14 elements. If the vector is NULL/empty, the zero distortion coefficients are
assumed.
@param rvec Input/Output rotation vector (see @ref Rodrigues ) that, together with tvec, brings points from
the model coordinate system to the camera coordinate system. Input values are used as an initial solution.
@param tvec Input/Output translation vector. Input values are used as an initial solution.
@param criteria Criteria when to stop the Levenberg-Marquard iterative algorithm.

The function refines the object pose given at least 3 object points, their corresponding image
projections, an initial solution for the rotation and translation vector,
as well as the camera matrix and the distortion coefficients.
The function minimizes the projection error with respect to the rotation and the translation vectors, according
to a Levenberg-Marquardt iterative minimization @cite Madsen04 @cite Eade13 process.
 */
CV_EXPORTS_W void solvePnPRefineLM( InputArray objectPoints, InputArray imagePoints,
                                    InputArray cameraMatrix, InputArray distCoeffs,
                                    InputOutputArray rvec, InputOutputArray tvec,
                                    TermCriteria criteria = TermCriteria(TermCriteria::EPS + TermCriteria::COUNT, 20, FLT_EPSILON));

/** @brief Refine a pose (the translation and the rotation that transform a 3D point expressed in the object coordinate frame
to the camera coordinate frame) from a 3D-2D point correspondences and starting from an initial solution.

@param objectPoints Array of object points in the object coordinate space, Nx3 1-channel or 1xN/Nx1 3-channel,
where N is the number of points. vector\<Point3f\> can also be passed here.
@param imagePoints Array of corresponding image points, Nx2 1-channel or 1xN/Nx1 2-channel,
where N is the number of points. vector\<Point2f\> can also be passed here.
@param cameraMatrix Input camera matrix \f$A = \vecthreethree{fx}{0}{cx}{0}{fy}{cy}{0}{0}{1}\f$ .
@param distCoeffs Input vector of distortion coefficients
\f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6 [, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$ of
4, 5, 8, 12 or 14 elements. If the vector is NULL/empty, the zero distortion coefficients are
assumed.
@param rvec Input/Output rotation vector (see @ref Rodrigues ) that, together with tvec, brings points from
the model coordinate system to the camera coordinate system. Input values are used as an initial solution.
@param tvec Input/Output translation vector. Input values are used as an initial solution.
@param criteria Criteria when to stop the Levenberg-Marquard iterative algorithm.
@param VVSlambda Gain for the virtual visual servoing control law, equivalent to the \f$\alpha\f$
gain in the Damped Gauss-Newton formulation.

The function refines the object pose given at least 3 object points, their corresponding image
projections, an initial solution for the rotation and translation vector,
as well as the camera matrix and the distortion coefficients.
The function minimizes the projection error with respect to the rotation and the translation vectors, using a
virtual visual servoing (VVS) @cite Chaumette06 @cite Marchand16 scheme.
 */
CV_EXPORTS_W void solvePnPRefineVVS( InputArray objectPoints, InputArray imagePoints,
                                     InputArray cameraMatrix, InputArray distCoeffs,
                                     InputOutputArray rvec, InputOutputArray tvec,
                                     TermCriteria criteria = TermCriteria(TermCriteria::EPS + TermCriteria::COUNT, 20, FLT_EPSILON),
                                     double VVSlambda = 1);

/** @brief Finds an object pose from 3D-2D point correspondences.
This function returns a list of all the possible solutions (a solution is a <rotation vector, translation vector>
couple), depending on the number of input points and the chosen method:
- P3P methods (@ref SOLVEPNP_P3P, @ref SOLVEPNP_AP3P): 3 or 4 input points. Number of returned solutions can be between 0 and 4 with 3 input points.
- @ref SOLVEPNP_IPPE Input points must be >= 4 and object points must be coplanar. Returns 2 solutions.
- @ref SOLVEPNP_IPPE_SQUARE Special case suitable for marker pose estimation.
Number of input points must be 4 and 2 solutions are returned. Object points must be defined in the following order:
  - point 0: [-squareLength / 2,  squareLength / 2, 0]
  - point 1: [ squareLength / 2,  squareLength / 2, 0]
  - point 2: [ squareLength / 2, -squareLength / 2, 0]
  - point 3: [-squareLength / 2, -squareLength / 2, 0]
- for all the other flags, number of input points must be >= 4 and object points can be in any configuration.
Only 1 solution is returned.

@param objectPoints Array of object points in the object coordinate space, Nx3 1-channel or
1xN/Nx1 3-channel, where N is the number of points. vector\<Point3f\> can be also passed here.
@param imagePoints Array of corresponding image points, Nx2 1-channel or 1xN/Nx1 2-channel,
where N is the number of points. vector\<Point2f\> can be also passed here.
@param cameraMatrix Input camera matrix \f$A = \vecthreethree{fx}{0}{cx}{0}{fy}{cy}{0}{0}{1}\f$ .
@param distCoeffs Input vector of distortion coefficients
\f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6 [, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$ of
4, 5, 8, 12 or 14 elements. If the vector is NULL/empty, the zero distortion coefficients are
assumed.
@param rvecs Vector of output rotation vectors (see @ref Rodrigues ) that, together with tvecs, brings points from
the model coordinate system to the camera coordinate system.
@param tvecs Vector of output translation vectors.
@param useExtrinsicGuess Parameter used for #SOLVEPNP_ITERATIVE. If true (1), the function uses
the provided rvec and tvec values as initial approximations of the rotation and translation
vectors, respectively, and further optimizes them.
@param flags Method for solving a PnP problem:
-   **SOLVEPNP_ITERATIVE** Iterative method is based on a Levenberg-Marquardt optimization. In
this case the function finds such a pose that minimizes reprojection error, that is the sum
of squared distances between the observed projections imagePoints and the projected (using
projectPoints ) objectPoints .
-   **SOLVEPNP_P3P** Method is based on the paper of X.S. Gao, X.-R. Hou, J. Tang, H.-F. Chang
"Complete Solution Classification for the Perspective-Three-Point Problem" (@cite gao2003complete).
In this case the function requires exactly four object and image points.
-   **SOLVEPNP_AP3P** Method is based on the paper of T. Ke, S. Roumeliotis
"An Efficient Algebraic Solution to the Perspective-Three-Point Problem" (@cite Ke17).
In this case the function requires exactly four object and image points.
-   **SOLVEPNP_EPNP** Method has been introduced by F.Moreno-Noguer, V.Lepetit and P.Fua in the
paper "EPnP: Efficient Perspective-n-Point Camera Pose Estimation" (@cite lepetit2009epnp).
-   **SOLVEPNP_DLS** Method is based on the paper of Joel A. Hesch and Stergios I. Roumeliotis.
"A Direct Least-Squares (DLS) Method for PnP" (@cite hesch2011direct).
-   **SOLVEPNP_UPNP** Method is based on the paper of A.Penate-Sanchez, J.Andrade-Cetto,
F.Moreno-Noguer. "Exhaustive Linearization for Robust Camera Pose and Focal Length
Estimation" (@cite penate2013exhaustive). In this case the function also estimates the parameters \f$f_x\f$ and \f$f_y\f$
assuming that both have the same value. Then the cameraMatrix is updated with the estimated
focal length.
-   **SOLVEPNP_IPPE** Method is based on the paper of T. Collins and A. Bartoli.
"Infinitesimal Plane-Based Pose Estimation" (@cite Collins14). This method requires coplanar object points.
-   **SOLVEPNP_IPPE_SQUARE** Method is based on the paper of Toby Collins and Adrien Bartoli.
"Infinitesimal Plane-Based Pose Estimation" (@cite Collins14). This method is suitable for marker pose estimation.
It requires 4 coplanar object points defined in the following order:
  - point 0: [-squareLength / 2,  squareLength / 2, 0]
  - point 1: [ squareLength / 2,  squareLength / 2, 0]
  - point 2: [ squareLength / 2, -squareLength / 2, 0]
  - point 3: [-squareLength / 2, -squareLength / 2, 0]
@param rvec Rotation vector used to initialize an iterative PnP refinement algorithm, when flag is SOLVEPNP_ITERATIVE
and useExtrinsicGuess is set to true.
@param tvec Translation vector used to initialize an iterative PnP refinement algorithm, when flag is SOLVEPNP_ITERATIVE
and useExtrinsicGuess is set to true.
@param reprojectionError Optional vector of reprojection error, that is the RMS error
(\f$ \text{RMSE} = \sqrt{\frac{\sum_{i}^{N} \left ( \hat{y_i} - y_i \right )^2}{N}} \f$) between the input image points
and the 3D object points projected with the estimated pose.

The function estimates the object pose given a set of object points, their corresponding image
projections, as well as the camera matrix and the distortion coefficients, see the figure below
(more precisely, the X-axis of the camera frame is pointing to the right, the Y-axis downward
and the Z-axis forward).

![](pnp.jpg)

Points expressed in the world frame \f$ \bf{X}_w \f$ are projected into the image plane \f$ \left[ u, v \right] \f$
using the perspective projection model \f$ \Pi \f$ and the camera intrinsic parameters matrix \f$ \bf{A} \f$:

\f[
  \begin{align*}
  \begin{bmatrix}
  u \\
  v \\
  1
  \end{bmatrix} &=
  \bf{A} \hspace{0.1em} \Pi \hspace{0.2em} ^{c}\bf{M}_w
  \begin{bmatrix}
  X_{w} \\
  Y_{w} \\
  Z_{w} \\
  1
  \end{bmatrix} \\
  \begin{bmatrix}
  u \\
  v \\
  1
  \end{bmatrix} &=
  \begin{bmatrix}
  f_x & 0 & c_x \\
  0 & f_y & c_y \\
  0 & 0 & 1
  \end{bmatrix}
  \begin{bmatrix}
  1 & 0 & 0 & 0 \\
  0 & 1 & 0 & 0 \\
  0 & 0 & 1 & 0
  \end{bmatrix}
  \begin{bmatrix}
  r_{11} & r_{12} & r_{13} & t_x \\
  r_{21} & r_{22} & r_{23} & t_y \\
  r_{31} & r_{32} & r_{33} & t_z \\
  0 & 0 & 0 & 1
  \end{bmatrix}
  \begin{bmatrix}
  X_{w} \\
  Y_{w} \\
  Z_{w} \\
  1
  \end{bmatrix}
  \end{align*}
\f]

The estimated pose is thus the rotation (`rvec`) and the translation (`tvec`) vectors that allow transforming
a 3D point expressed in the world frame into the camera frame:

\f[
  \begin{align*}
  \begin{bmatrix}
  X_c \\
  Y_c \\
  Z_c \\
  1
  \end{bmatrix} &=
  \hspace{0.2em} ^{c}\bf{M}_w
  \begin{bmatrix}
  X_{w} \\
  Y_{w} \\
  Z_{w} \\
  1
  \end{bmatrix} \\
  \begin{bmatrix}
  X_c \\
  Y_c \\
  Z_c \\
  1
  \end{bmatrix} &=
  \begin{bmatrix}
  r_{11} & r_{12} & r_{13} & t_x \\
  r_{21} & r_{22} & r_{23} & t_y \\
  r_{31} & r_{32} & r_{33} & t_z \\
  0 & 0 & 0 & 1
  \end{bmatrix}
  \begin{bmatrix}
  X_{w} \\
  Y_{w} \\
  Z_{w} \\
  1
  \end{bmatrix}
  \end{align*}
\f]

@note
   -   An example of how to use solvePnP for planar augmented reality can be found at
        opencv_source_code/samples/python/plane_ar.py
   -   If you are using Python:
        - Numpy array slices won't work as input because solvePnP requires contiguous
        arrays (enforced by the assertion using cv::Mat::checkVector() around line 55 of
        modules/calib3d/src/solvepnp.cpp version 2.4.9)
        - The P3P algorithm requires image points to be in an array of shape (N,1,2) due
        to its calling of cv::undistortPoints (around line 75 of modules/calib3d/src/solvepnp.cpp version 2.4.9)
        which requires 2-channel information.
        - Thus, given some data D = np.array(...) where D.shape = (N,M), in order to use a subset of
        it as, e.g., imagePoints, one must effectively copy it into a new array: imagePoints =
        np.ascontiguousarray(D[:,:2]).reshape((N,1,2))
   -   The methods **SOLVEPNP_DLS** and **SOLVEPNP_UPNP** cannot be used as the current implementations are
       unstable and sometimes give completely wrong results. If you pass one of these two
       flags, **SOLVEPNP_EPNP** method will be used instead.
   -   The minimum number of points is 4 in the general case. In the case of **SOLVEPNP_P3P** and **SOLVEPNP_AP3P**
       methods, it is required to use exactly 4 points (the first 3 points are used to estimate all the solutions
       of the P3P problem, the last one is used to retain the best solution that minimizes the reprojection error).
   -   With **SOLVEPNP_ITERATIVE** method and `useExtrinsicGuess=true`, the minimum number of points is 3 (3 points
       are sufficient to compute a pose but there are up to 4 solutions). The initial solution should be close to the
       global solution to converge.
   -   With **SOLVEPNP_IPPE** input points must be >= 4 and object points must be coplanar.
   -   With **SOLVEPNP_IPPE_SQUARE** this is a special case suitable for marker pose estimation.
       Number of input points must be 4. Object points must be defined in the following order:
         - point 0: [-squareLength / 2,  squareLength / 2, 0]
         - point 1: [ squareLength / 2,  squareLength / 2, 0]
         - point 2: [ squareLength / 2, -squareLength / 2, 0]
         - point 3: [-squareLength / 2, -squareLength / 2, 0]
 */
CV_EXPORTS_W int solvePnPGeneric( InputArray objectPoints, InputArray imagePoints,
                                  InputArray cameraMatrix, InputArray distCoeffs,
                                  OutputArrayOfArrays rvecs, OutputArrayOfArrays tvecs,
                                  bool useExtrinsicGuess = false, SolvePnPMethod flags = SOLVEPNP_ITERATIVE,
                                  InputArray rvec = noArray(), InputArray tvec = noArray(),
                                  OutputArray reprojectionError = noArray() );

/** @brief Finds an initial camera matrix from 3D-2D point correspondences.

@param objectPoints Vector of vectors of the calibration pattern points in the calibration pattern
coordinate space. In the old interface all the per-view vectors are concatenated. See
calibrateCamera for details.
@param imagePoints Vector of vectors of the projections of the calibration pattern points. In the
old interface all the per-view vectors are concatenated.
@param imageSize Image size in pixels used to initialize the principal point.
@param aspectRatio If it is zero or negative, both \f$f_x\f$ and \f$f_y\f$ are estimated independently.
Otherwise, \f$f_x = f_y * \texttt{aspectRatio}\f$ .

The function estimates and returns an initial camera matrix for the camera calibration process.
Currently, the function only supports planar calibration patterns, which are patterns where each
object point has z-coordinate =0.
 */
CV_EXPORTS_W Mat initCameraMatrix2D( InputArrayOfArrays objectPoints,
                                     InputArrayOfArrays imagePoints,
                                     Size imageSize, double aspectRatio = 1.0 );

/** @brief Finds the positions of internal corners of the chessboard.

@param image Source chessboard view. It must be an 8-bit grayscale or color image.
@param patternSize Number of inner corners per a chessboard row and column
( patternSize = cv::Size(points_per_row,points_per_colum) = cv::Size(columns,rows) ).
@param corners Output array of detected corners.
@param flags Various operation flags that can be zero or a combination of the following values:
-   **CALIB_CB_ADAPTIVE_THRESH** Use adaptive thresholding to convert the image to black
and white, rather than a fixed threshold level (computed from the average image brightness).
-   **CALIB_CB_NORMALIZE_IMAGE** Normalize the image gamma with equalizeHist before
applying fixed or adaptive thresholding.
-   **CALIB_CB_FILTER_QUADS** Use additional criteria (like contour area, perimeter,
square-like shape) to filter out false quads extracted at the contour retrieval stage.
-   **CALIB_CB_FAST_CHECK** Run a fast check on the image that looks for chessboard corners,
and shortcut the call if none is found. This can drastically speed up the call in the
degenerate condition when no chessboard is observed.

The function attempts to determine whether the input image is a view of the chessboard pattern and
locate the internal chessboard corners. The function returns a non-zero value if all of the corners
are found and they are placed in a certain order (row by row, left to right in every row).
Otherwise, if the function fails to find all the corners or reorder them, it returns 0. For example,
a regular chessboard has 8 x 8 squares and 7 x 7 internal corners, that is, points where the black
squares touch each other. The detected coordinates are approximate, and to determine their positions
more accurately, the function calls cornerSubPix. You also may use the function cornerSubPix with
different parameters if returned coordinates are not accurate enough.

Sample usage of detecting and drawing chessboard corners: :
@code
    Size patternsize(8,6); //interior number of corners
    Mat gray = ....; //source image
    vector<Point2f> corners; //this will be filled by the detected corners

    //CALIB_CB_FAST_CHECK saves a lot of time on images
    //that do not contain any chessboard corners
    bool patternfound = findChessboardCorners(gray, patternsize, corners,
            CALIB_CB_ADAPTIVE_THRESH + CALIB_CB_NORMALIZE_IMAGE
            + CALIB_CB_FAST_CHECK);

    if(patternfound)
      cornerSubPix(gray, corners, Size(11, 11), Size(-1, -1),
        TermCriteria(CV_TERMCRIT_EPS + CV_TERMCRIT_ITER, 30, 0.1));

    drawChessboardCorners(img, patternsize, Mat(corners), patternfound);
@endcode
@note The function requires white space (like a square-thick border, the wider the better) around
the board to make the detection more robust in various environments. Otherwise, if there is no
border and the background is dark, the outer black squares cannot be segmented properly and so the
square grouping and ordering algorithm fails.
 */
CV_EXPORTS_W bool findChessboardCorners( InputArray image, Size patternSize, OutputArray corners,
                                         int flags = CALIB_CB_ADAPTIVE_THRESH + CALIB_CB_NORMALIZE_IMAGE );

/*
   Checks whether the image contains chessboard of the specific size or not.
   If yes, nonzero value is returned.
*/
CV_EXPORTS_W bool checkChessboard(InputArray img, Size size);

/** @brief Finds the positions of internal corners of the chessboard using a sector based approach.

@param image Source chessboard view. It must be an 8-bit grayscale or color image.
@param patternSize Number of inner corners per a chessboard row and column
( patternSize = cv::Size(points_per_row,points_per_colum) = cv::Size(columns,rows) ).
@param corners Output array of detected corners.
@param flags Various operation flags that can be zero or a combination of the following values:
-   **CALIB_CB_NORMALIZE_IMAGE** Normalize the image gamma with equalizeHist before detection.
-   **CALIB_CB_EXHAUSTIVE** Run an exhaustive search to improve detection rate.
-   **CALIB_CB_ACCURACY** Up sample input image to improve sub-pixel accuracy due to aliasing effects.
This should be used if an accurate camera calibration is required.

The function is analog to findchessboardCorners but uses a localized radon
transformation approximated by box filters being more robust to all sort of
noise, faster on larger images and is able to directly return the sub-pixel
position of the internal chessboard corners. The Method is based on the paper
@cite duda2018 "Accurate Detection and Localization of Checkerboard Corners for
Calibration" demonstrating that the returned sub-pixel positions are more
accurate than the one returned by cornerSubPix allowing a precise camera
calibration for demanding applications.

@note The function requires a white boarder with roughly the same width as one
of the checkerboard fields around the whole board to improve the detection in
various environments. In addition, because of the localized radon
transformation it is beneficial to use round corners for the field corners
which are located on the outside of the board. The following figure illustrates
a sample checkerboard optimized for the detection. However, any other checkerboard
can be used as well.
![Checkerboard](pics/checkerboard_radon.png)
 */
CV_EXPORTS_W bool findChessboardCornersSB(InputArray image,Size patternSize, OutputArray corners,int flags=0);

//! finds subpixel-accurate positions of the chessboard corners
CV_EXPORTS_W bool find4QuadCornerSubpix( InputArray img, InputOutputArray corners, Size region_size );

/** @brief Renders the detected chessboard corners.

@param image Destination image. It must be an 8-bit color image.
@param patternSize Number of inner corners per a chessboard row and column
(patternSize = cv::Size(points_per_row,points_per_column)).
@param corners Array of detected corners, the output of findChessboardCorners.
@param patternWasFound Parameter indicating whether the complete board was found or not. The
return value of findChessboardCorners should be passed here.

The function draws individual chessboard corners detected either as red circles if the board was not
found, or as colored corners connected with lines if the board was found.
 */
CV_EXPORTS_W void drawChessboardCorners( InputOutputArray image, Size patternSize,
                                         InputArray corners, bool patternWasFound );

/** @brief Draw axes of the world/object coordinate system from pose estimation. @sa solvePnP

@param image Input/output image. It must have 1 or 3 channels. The number of channels is not altered.
@param cameraMatrix Input 3x3 floating-point matrix of camera intrinsic parameters.
\f$A = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$
@param distCoeffs Input vector of distortion coefficients
\f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6 [, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$ of
4, 5, 8, 12 or 14 elements. If the vector is empty, the zero distortion coefficients are assumed.
@param rvec Rotation vector (see @ref Rodrigues ) that, together with tvec, brings points from
the model coordinate system to the camera coordinate system.
@param tvec Translation vector.
@param length Length of the painted axes in the same unit than tvec (usually in meters).
@param thickness Line thickness of the painted axes.

This function draws the axes of the world/object coordinate system w.r.t. to the camera frame.
OX is drawn in red, OY in green and OZ in blue.
 */
CV_EXPORTS_W void drawFrameAxes(InputOutputArray image, InputArray cameraMatrix, InputArray distCoeffs,
                                InputArray rvec, InputArray tvec, float length, int thickness=3);

struct CV_EXPORTS_W_SIMPLE CirclesGridFinderParameters
{
    CV_WRAP CirclesGridFinderParameters();
    CV_PROP_RW cv::Size2f densityNeighborhoodSize;
    CV_PROP_RW float minDensity;
    CV_PROP_RW int kmeansAttempts;
    CV_PROP_RW int minDistanceToAddKeypoint;
    CV_PROP_RW int keypointScale;
    CV_PROP_RW float minGraphConfidence;
    CV_PROP_RW float vertexGain;
    CV_PROP_RW float vertexPenalty;
    CV_PROP_RW float existingVertexGain;
    CV_PROP_RW float edgeGain;
    CV_PROP_RW float edgePenalty;
    CV_PROP_RW float convexHullFactor;
    CV_PROP_RW float minRNGEdgeSwitchDist;

    enum GridType
    {
      SYMMETRIC_GRID, ASYMMETRIC_GRID
    };
    GridType gridType;

    CV_PROP_RW float squareSize; //!< Distance between two adjacent points. Used by CALIB_CB_CLUSTERING.
    CV_PROP_RW float maxRectifiedDistance; //!< Max deviation from predicion. Used by CALIB_CB_CLUSTERING.
};

#ifndef DISABLE_OPENCV_3_COMPATIBILITY
typedef CirclesGridFinderParameters CirclesGridFinderParameters2;
#endif

/** @brief Finds centers in the grid of circles.

@param image grid view of input circles; it must be an 8-bit grayscale or color image.
@param patternSize number of circles per row and column
( patternSize = Size(points_per_row, points_per_colum) ).
@param centers output array of detected centers.
@param flags various operation flags that can be one of the following values:
-   **CALIB_CB_SYMMETRIC_GRID** uses symmetric pattern of circles.
-   **CALIB_CB_ASYMMETRIC_GRID** uses asymmetric pattern of circles.
-   **CALIB_CB_CLUSTERING** uses a special algorithm for grid detection. It is more robust to
perspective distortions but much more sensitive to background clutter.
@param blobDetector feature detector that finds blobs like dark circles on light background.
@param parameters struct for finding circles in a grid pattern.

The function attempts to determine whether the input image contains a grid of circles. If it is, the
function locates centers of the circles. The function returns a non-zero value if all of the centers
have been found and they have been placed in a certain order (row by row, left to right in every
row). Otherwise, if the function fails to find all the corners or reorder them, it returns 0.

Sample usage of detecting and drawing the centers of circles: :
@code
    Size patternsize(7,7); //number of centers
    Mat gray = ....; //source image
    vector<Point2f> centers; //this will be filled by the detected centers

    bool patternfound = findCirclesGrid(gray, patternsize, centers);

    drawChessboardCorners(img, patternsize, Mat(centers), patternfound);
@endcode
@note The function requires white space (like a square-thick border, the wider the better) around
the board to make the detection more robust in various environments.
 */
CV_EXPORTS_W bool findCirclesGrid( InputArray image, Size patternSize,
                                   OutputArray centers, int flags,
                                   const Ptr<FeatureDetector> &blobDetector,
                                   const CirclesGridFinderParameters& parameters);

/** @overload */
CV_EXPORTS_W bool findCirclesGrid( InputArray image, Size patternSize,
                                   OutputArray centers, int flags = CALIB_CB_SYMMETRIC_GRID,
                                   const Ptr<FeatureDetector> &blobDetector = SimpleBlobDetector::create());

/** @brief Finds the camera intrinsic and extrinsic parameters from several views of a calibration pattern.

@param objectPoints In the new interface it is a vector of vectors of calibration pattern points in
the calibration pattern coordinate space (e.g. std::vector<std::vector<cv::Vec3f>>). The outer
vector contains as many elements as the number of the pattern views. If the same calibration pattern
is shown in each view and it is fully visible, all the vectors will be the same. Although, it is
possible to use partially occluded patterns, or even different patterns in different views. Then,
the vectors will be different. The points are 3D, but since they are in a pattern coordinate system,
then, if the rig is planar, it may make sense to put the model to a XY coordinate plane so that
Z-coordinate of each input object point is 0.
In the old interface all the vectors of object points from different views are concatenated
together.
@param imagePoints In the new interface it is a vector of vectors of the projections of calibration
pattern points (e.g. std::vector<std::vector<cv::Vec2f>>). imagePoints.size() and
objectPoints.size() and imagePoints[i].size() must be equal to objectPoints[i].size() for each i.
In the old interface all the vectors of object points from different views are concatenated
together.
@param imageSize Size of the image used only to initialize the intrinsic camera matrix.
@param cameraMatrix Output 3x3 floating-point camera matrix
\f$A = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$ . If CV\_CALIB\_USE\_INTRINSIC\_GUESS
and/or CALIB_FIX_ASPECT_RATIO are specified, some or all of fx, fy, cx, cy must be
initialized before calling the function.
@param distCoeffs Output vector of distortion coefficients
\f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6 [, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$ of
4, 5, 8, 12 or 14 elements.
@param rvecs Output vector of rotation vectors (see Rodrigues ) estimated for each pattern view
(e.g. std::vector<cv::Mat>>). That is, each k-th rotation vector together with the corresponding
k-th translation vector (see the next output parameter description) brings the calibration pattern
from the model coordinate space (in which object points are specified) to the world coordinate
space, that is, a real position of the calibration pattern in the k-th pattern view (k=0.. *M* -1).
@param tvecs Output vector of translation vectors estimated for each pattern view.
@param stdDeviationsIntrinsics Output vector of standard deviations estimated for intrinsic parameters.
 Order of deviations values:
\f$(f_x, f_y, c_x, c_y, k_1, k_2, p_1, p_2, k_3, k_4, k_5, k_6 , s_1, s_2, s_3,
 s_4, \tau_x, \tau_y)\f$ If one of parameters is not estimated, it's deviation is equals to zero.
@param stdDeviationsExtrinsics Output vector of standard deviations estimated for extrinsic parameters.
 Order of deviations values: \f$(R_1, T_1, \dotsc , R_M, T_M)\f$ where M is number of pattern views,
 \f$R_i, T_i\f$ are concatenated 1x3 vectors.
 @param perViewErrors Output vector of the RMS re-projection error estimated for each pattern view.
@param flags Different flags that may be zero or a combination of the following values:
-   **CALIB_USE_INTRINSIC_GUESS** cameraMatrix contains valid initial values of
fx, fy, cx, cy that are optimized further. Otherwise, (cx, cy) is initially set to the image
center ( imageSize is used), and focal distances are computed in a least-squares fashion.
Note, that if intrinsic parameters are known, there is no need to use this function just to
estimate extrinsic parameters. Use solvePnP instead.
-   **CALIB_FIX_PRINCIPAL_POINT** The principal point is not changed during the global
optimization. It stays at the center or at a different location specified when
CALIB_USE_INTRINSIC_GUESS is set too.
-   **CALIB_FIX_ASPECT_RATIO** The functions considers only fy as a free parameter. The
ratio fx/fy stays the same as in the input cameraMatrix . When
CALIB_USE_INTRINSIC_GUESS is not set, the actual input values of fx and fy are
ignored, only their ratio is computed and used further.
-   **CALIB_ZERO_TANGENT_DIST** Tangential distortion coefficients \f$(p_1, p_2)\f$ are set
to zeros and stay zero.
-   **CALIB_FIX_K1,...,CALIB_FIX_K6** The corresponding radial distortion
coefficient is not changed during the optimization. If CALIB_USE_INTRINSIC_GUESS is
set, the coefficient from the supplied distCoeffs matrix is used. Otherwise, it is set to 0.
-   **CALIB_RATIONAL_MODEL** Coefficients k4, k5, and k6 are enabled. To provide the
backward compatibility, this extra flag should be explicitly specified to make the
calibration function use the rational model and return 8 coefficients. If the flag is not
set, the function computes and returns only 5 distortion coefficients.
-   **CALIB_THIN_PRISM_MODEL** Coefficients s1, s2, s3 and s4 are enabled. To provide the
backward compatibility, this extra flag should be explicitly specified to make the
calibration function use the thin prism model and return 12 coefficients. If the flag is not
set, the function computes and returns only 5 distortion coefficients.
-   **CALIB_FIX_S1_S2_S3_S4** The thin prism distortion coefficients are not changed during
the optimization. If CALIB_USE_INTRINSIC_GUESS is set, the coefficient from the
supplied distCoeffs matrix is used. Otherwise, it is set to 0.
-   **CALIB_TILTED_MODEL** Coefficients tauX and tauY are enabled. To provide the
backward compatibility, this extra flag should be explicitly specified to make the
calibration function use the tilted sensor model and return 14 coefficients. If the flag is not
set, the function computes and returns only 5 distortion coefficients.
-   **CALIB_FIX_TAUX_TAUY** The coefficients of the tilted sensor model are not changed during
the optimization. If CALIB_USE_INTRINSIC_GUESS is set, the coefficient from the
supplied distCoeffs matrix is used. Otherwise, it is set to 0.
@param criteria Termination criteria for the iterative optimization algorithm.

@return the overall RMS re-projection error.

The function estimates the intrinsic camera parameters and extrinsic parameters for each of the
views. The algorithm is based on @cite Zhang2000 and @cite BouguetMCT . The coordinates of 3D object
points and their corresponding 2D projections in each view must be specified. That may be achieved
by using an object with a known geometry and easily detectable feature points. Such an object is
called a calibration rig or calibration pattern, and OpenCV has built-in support for a chessboard as
a calibration rig (see findChessboardCorners ). Currently, initialization of intrinsic parameters
(when CALIB_USE_INTRINSIC_GUESS is not set) is only implemented for planar calibration
patterns (where Z-coordinates of the object points must be all zeros). 3D calibration rigs can also
be used as long as initial cameraMatrix is provided.

The algorithm performs the following steps:

-   Compute the initial intrinsic parameters (the option only available for planar calibration
    patterns) or read them from the input parameters. The distortion coefficients are all set to
    zeros initially unless some of CALIB_FIX_K? are specified.

-   Estimate the initial camera pose as if the intrinsic parameters have been already known. This is
    done using solvePnP .

-   Run the global Levenberg-Marquardt optimization algorithm to minimize the reprojection error,
    that is, the total sum of squared distances between the observed feature points imagePoints and
    the projected (using the current estimates for camera parameters and the poses) object points
    objectPoints. See projectPoints for details.

@note
   If you use a non-square (=non-NxN) grid and findChessboardCorners for calibration, and
    calibrateCamera returns bad values (zero distortion coefficients, an image center very far from
    (w/2-0.5,h/2-0.5), and/or large differences between \f$f_x\f$ and \f$f_y\f$ (ratios of 10:1 or more)),
    then you have probably used patternSize=cvSize(rows,cols) instead of using
    patternSize=cvSize(cols,rows) in findChessboardCorners .

@sa
   calibrateCameraRO, findChessboardCorners, solvePnP, initCameraMatrix2D, stereoCalibrate, undistort
 */
CV_EXPORTS_AS(calibrateCameraExtended) double calibrateCamera( InputArrayOfArrays objectPoints,
                                     InputArrayOfArrays imagePoints, Size imageSize,
                                     InputOutputArray cameraMatrix, InputOutputArray distCoeffs,
                                     OutputArrayOfArrays rvecs, OutputArrayOfArrays tvecs,
                                     OutputArray stdDeviationsIntrinsics,
                                     OutputArray stdDeviationsExtrinsics,
                                     OutputArray perViewErrors,
                                     int flags = 0, TermCriteria criteria = TermCriteria(
                                        TermCriteria::COUNT + TermCriteria::EPS, 30, DBL_EPSILON) );

/** @overload */
CV_EXPORTS_W double calibrateCamera( InputArrayOfArrays objectPoints,
                                     InputArrayOfArrays imagePoints, Size imageSize,
                                     InputOutputArray cameraMatrix, InputOutputArray distCoeffs,
                                     OutputArrayOfArrays rvecs, OutputArrayOfArrays tvecs,
                                     int flags = 0, TermCriteria criteria = TermCriteria(
                                        TermCriteria::COUNT + TermCriteria::EPS, 30, DBL_EPSILON) );

/** @brief Finds the camera intrinsic and extrinsic parameters from several views of a calibration pattern.

This function is an extension of calibrateCamera() with the method of releasing object which was
proposed in @cite strobl2011iccv. In many common cases with inaccurate, unmeasured, roughly planar
targets (calibration plates), this method can dramatically improve the precision of the estimated
camera parameters. Both the object-releasing method and standard method are supported by this
function. Use the parameter **iFixedPoint** for method selection. In the internal implementation,
calibrateCamera() is a wrapper for this function.

@param objectPoints Vector of vectors of calibration pattern points in the calibration pattern
coordinate space. See calibrateCamera() for details. If the method of releasing object to be used,
the identical calibration board must be used in each view and it must be fully visible, and all
objectPoints[i] must be the same and all points should be roughly close to a plane. **The calibration
target has to be rigid, or at least static if the camera (rather than the calibration target) is
shifted for grabbing images.**
@param imagePoints Vector of vectors of the projections of calibration pattern points. See
calibrateCamera() for details.
@param imageSize Size of the image used only to initialize the intrinsic camera matrix.
@param iFixedPoint The index of the 3D object point in objectPoints[0] to be fixed. It also acts as
a switch for calibration method selection. If object-releasing method to be used, pass in the
parameter in the range of [1, objectPoints[0].size()-2], otherwise a value out of this range will
make standard calibration method selected. Usually the top-right corner point of the calibration
board grid is recommended to be fixed when object-releasing method being utilized. According to
\cite strobl2011iccv, two other points are also fixed. In this implementation, objectPoints[0].front
and objectPoints[0].back.z are used. With object-releasing method, accurate rvecs, tvecs and
newObjPoints are only possible if coordinates of these three fixed points are accurate enough.
@param cameraMatrix Output 3x3 floating-point camera matrix. See calibrateCamera() for details.
@param distCoeffs Output vector of distortion coefficients. See calibrateCamera() for details.
@param rvecs Output vector of rotation vectors estimated for each pattern view. See calibrateCamera()
for details.
@param tvecs Output vector of translation vectors estimated for each pattern view.
@param newObjPoints The updated output vector of calibration pattern points. The coordinates might
be scaled based on three fixed points. The returned coordinates are accurate only if the above
mentioned three fixed points are accurate. If not needed, noArray() can be passed in. This parameter
is ignored with standard calibration method.
@param stdDeviationsIntrinsics Output vector of standard deviations estimated for intrinsic parameters.
See calibrateCamera() for details.
@param stdDeviationsExtrinsics Output vector of standard deviations estimated for extrinsic parameters.
See calibrateCamera() for details.
@param stdDeviationsObjPoints Output vector of standard deviations estimated for refined coordinates
of calibration pattern points. It has the same size and order as objectPoints[0] vector. This
parameter is ignored with standard calibration method.
 @param perViewErrors Output vector of the RMS re-projection error estimated for each pattern view.
@param flags Different flags that may be zero or a combination of some predefined values. See
calibrateCamera() for details. If the method of releasing object is used, the calibration time may
be much longer. CALIB_USE_QR or CALIB_USE_LU could be used for faster calibration with potentially
less precise and less stable in some rare cases.
@param criteria Termination criteria for the iterative optimization algorithm.

@return the overall RMS re-projection error.

The function estimates the intrinsic camera parameters and extrinsic parameters for each of the
views. The algorithm is based on @cite Zhang2000, @cite BouguetMCT and @cite strobl2011iccv. See
calibrateCamera() for other detailed explanations.
@sa
   calibrateCamera, findChessboardCorners, solvePnP, initCameraMatrix2D, stereoCalibrate, undistort
 */
CV_EXPORTS_AS(calibrateCameraROExtended) double calibrateCameraRO( InputArrayOfArrays objectPoints,
                                     InputArrayOfArrays imagePoints, Size imageSize, int iFixedPoint,
                                     InputOutputArray cameraMatrix, InputOutputArray distCoeffs,
                                     OutputArrayOfArrays rvecs, OutputArrayOfArrays tvecs,
                                     OutputArray newObjPoints,
                                     OutputArray stdDeviationsIntrinsics,
                                     OutputArray stdDeviationsExtrinsics,
                                     OutputArray stdDeviationsObjPoints,
                                     OutputArray perViewErrors,
                                     int flags = 0, TermCriteria criteria = TermCriteria(
                                        TermCriteria::COUNT + TermCriteria::EPS, 30, DBL_EPSILON) );

/** @overload */
CV_EXPORTS_W double calibrateCameraRO( InputArrayOfArrays objectPoints,
                                     InputArrayOfArrays imagePoints, Size imageSize, int iFixedPoint,
                                     InputOutputArray cameraMatrix, InputOutputArray distCoeffs,
                                     OutputArrayOfArrays rvecs, OutputArrayOfArrays tvecs,
                                     OutputArray newObjPoints,
                                     int flags = 0, TermCriteria criteria = TermCriteria(
                                        TermCriteria::COUNT + TermCriteria::EPS, 30, DBL_EPSILON) );

/** @brief Computes useful camera characteristics from the camera matrix.

@param cameraMatrix Input camera matrix that can be estimated by calibrateCamera or
stereoCalibrate .
@param imageSize Input image size in pixels.
@param apertureWidth Physical width in mm of the sensor.
@param apertureHeight Physical height in mm of the sensor.
@param fovx Output field of view in degrees along the horizontal sensor axis.
@param fovy Output field of view in degrees along the vertical sensor axis.
@param focalLength Focal length of the lens in mm.
@param principalPoint Principal point in mm.
@param aspectRatio \f$f_y/f_x\f$

The function computes various useful camera characteristics from the previously estimated camera
matrix.

@note
   Do keep in mind that the unity measure 'mm' stands for whatever unit of measure one chooses for
    the chessboard pitch (it can thus be any value).
 */
CV_EXPORTS_W void calibrationMatrixValues( InputArray cameraMatrix, Size imageSize,
                                           double apertureWidth, double apertureHeight,
                                           CV_OUT double& fovx, CV_OUT double& fovy,
                                           CV_OUT double& focalLength, CV_OUT Point2d& principalPoint,
                                           CV_OUT double& aspectRatio );

/** @brief Calibrates the stereo camera.

@param objectPoints Vector of vectors of the calibration pattern points.
@param imagePoints1 Vector of vectors of the projections of the calibration pattern points,
observed by the first camera.
@param imagePoints2 Vector of vectors of the projections of the calibration pattern points,
observed by the second camera.
@param cameraMatrix1 Input/output first camera matrix:
\f$\vecthreethree{f_x^{(j)}}{0}{c_x^{(j)}}{0}{f_y^{(j)}}{c_y^{(j)}}{0}{0}{1}\f$ , \f$j = 0,\, 1\f$ . If
any of CALIB_USE_INTRINSIC_GUESS , CALIB_FIX_ASPECT_RATIO ,
CALIB_FIX_INTRINSIC , or CALIB_FIX_FOCAL_LENGTH are specified, some or all of the
matrix components must be initialized. See the flags description for details.
@param distCoeffs1 Input/output vector of distortion coefficients
\f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6 [, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$ of
4, 5, 8, 12 or 14 elements. The output vector length depends on the flags.
@param cameraMatrix2 Input/output second camera matrix. The parameter is similar to cameraMatrix1
@param distCoeffs2 Input/output lens distortion coefficients for the second camera. The parameter
is similar to distCoeffs1 .
@param imageSize Size of the image used only to initialize intrinsic camera matrix.
@param R Output rotation matrix between the 1st and the 2nd camera coordinate systems.
@param T Output translation vector between the coordinate systems of the cameras.
@param E Output essential matrix.
@param F Output fundamental matrix.
@param perViewErrors Output vector of the RMS re-projection error estimated for each pattern view.
@param flags Different flags that may be zero or a combination of the following values:
-   **CALIB_FIX_INTRINSIC** Fix cameraMatrix? and distCoeffs? so that only R, T, E , and F
matrices are estimated.
-   **CALIB_USE_INTRINSIC_GUESS** Optimize some or all of the intrinsic parameters
according to the specified flags. Initial values are provided by the user.
-   **CALIB_USE_EXTRINSIC_GUESS** R, T contain valid initial values that are optimized further.
Otherwise R, T are initialized to the median value of the pattern views (each dimension separately).
-   **CALIB_FIX_PRINCIPAL_POINT** Fix the principal points during the optimization.
-   **CALIB_FIX_FOCAL_LENGTH** Fix \f$f^{(j)}_x\f$ and \f$f^{(j)}_y\f$ .
-   **CALIB_FIX_ASPECT_RATIO** Optimize \f$f^{(j)}_y\f$ . Fix the ratio \f$f^{(j)}_x/f^{(j)}_y\f$
.
-   **CALIB_SAME_FOCAL_LENGTH** Enforce \f$f^{(0)}_x=f^{(1)}_x\f$ and \f$f^{(0)}_y=f^{(1)}_y\f$ .
-   **CALIB_ZERO_TANGENT_DIST** Set tangential distortion coefficients for each camera to
zeros and fix there.
-   **CALIB_FIX_K1,...,CALIB_FIX_K6** Do not change the corresponding radial
distortion coefficient during the optimization. If CALIB_USE_INTRINSIC_GUESS is set,
the coefficient from the supplied distCoeffs matrix is used. Otherwise, it is set to 0.
-   **CALIB_RATIONAL_MODEL** Enable coefficients k4, k5, and k6. To provide the backward
compatibility, this extra flag should be explicitly specified to make the calibration
function use the rational model and return 8 coefficients. If the flag is not set, the
function computes and returns only 5 distortion coefficients.
-   **CALIB_THIN_PRISM_MODEL** Coefficients s1, s2, s3 and s4 are enabled. To provide the
backward compatibility, this extra flag should be explicitly specified to make the
calibration function use the thin prism model and return 12 coefficients. If the flag is not
set, the function computes and returns only 5 distortion coefficients.
-   **CALIB_FIX_S1_S2_S3_S4** The thin prism distortion coefficients are not changed during
the optimization. If CALIB_USE_INTRINSIC_GUESS is set, the coefficient from the
supplied distCoeffs matrix is used. Otherwise, it is set to 0.
-   **CALIB_TILTED_MODEL** Coefficients tauX and tauY are enabled. To provide the
backward compatibility, this extra flag should be explicitly specified to make the
calibration function use the tilted sensor model and return 14 coefficients. If the flag is not
set, the function computes and returns only 5 distortion coefficients.
-   **CALIB_FIX_TAUX_TAUY** The coefficients of the tilted sensor model are not changed during
the optimization. If CALIB_USE_INTRINSIC_GUESS is set, the coefficient from the
supplied distCoeffs matrix is used. Otherwise, it is set to 0.
@param criteria Termination criteria for the iterative optimization algorithm.

The function estimates transformation between two cameras making a stereo pair. If you have a stereo
camera where the relative position and orientation of two cameras is fixed, and if you computed
poses of an object relative to the first camera and to the second camera, (R1, T1) and (R2, T2),
respectively (this can be done with solvePnP ), then those poses definitely relate to each other.
This means that, given ( \f$R_1\f$,\f$T_1\f$ ), it should be possible to compute ( \f$R_2\f$,\f$T_2\f$ ). You only
need to know the position and orientation of the second camera relative to the first camera. This is
what the described function does. It computes ( \f$R\f$,\f$T\f$ ) so that:

\f[R_2=R*R_1\f]
\f[T_2=R*T_1 + T,\f]

Optionally, it computes the essential matrix E:

\f[E= \vecthreethree{0}{-T_2}{T_1}{T_2}{0}{-T_0}{-T_1}{T_0}{0} *R\f]

where \f$T_i\f$ are components of the translation vector \f$T\f$ : \f$T=[T_0, T_1, T_2]^T\f$ . And the function
can also compute the fundamental matrix F:

\f[F = cameraMatrix2^{-T} E cameraMatrix1^{-1}\f]

Besides the stereo-related information, the function can also perform a full calibration of each of
two cameras. However, due to the high dimensionality of the parameter space and noise in the input
data, the function can diverge from the correct solution. If the intrinsic parameters can be
estimated with high accuracy for each of the cameras individually (for example, using
calibrateCamera ), you are recommended to do so and then pass CALIB_FIX_INTRINSIC flag to the
function along with the computed intrinsic parameters. Otherwise, if all the parameters are
estimated at once, it makes sense to restrict some parameters, for example, pass
CALIB_SAME_FOCAL_LENGTH and CALIB_ZERO_TANGENT_DIST flags, which is usually a
reasonable assumption.

Similarly to calibrateCamera , the function minimizes the total re-projection error for all the
points in all the available views from both cameras. The function returns the final value of the
re-projection error.
 */
CV_EXPORTS_AS(stereoCalibrateExtended) double stereoCalibrate( InputArrayOfArrays objectPoints,
                                     InputArrayOfArrays imagePoints1, InputArrayOfArrays imagePoints2,
                                     InputOutputArray cameraMatrix1, InputOutputArray distCoeffs1,
                                     InputOutputArray cameraMatrix2, InputOutputArray distCoeffs2,
                                     Size imageSize, InputOutputArray R,InputOutputArray T, OutputArray E, OutputArray F,
                                     OutputArray perViewErrors, int flags = CALIB_FIX_INTRINSIC,
                                     TermCriteria criteria = TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, 30, 1e-6) );

/// @overload
CV_EXPORTS_W double stereoCalibrate( InputArrayOfArrays objectPoints,
                                     InputArrayOfArrays imagePoints1, InputArrayOfArrays imagePoints2,
                                     InputOutputArray cameraMatrix1, InputOutputArray distCoeffs1,
                                     InputOutputArray cameraMatrix2, InputOutputArray distCoeffs2,
                                     Size imageSize, OutputArray R,OutputArray T, OutputArray E, OutputArray F,
                                     int flags = CALIB_FIX_INTRINSIC,
                                     TermCriteria criteria = TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, 30, 1e-6) );

/** @brief Computes rectification transforms for each head of a calibrated stereo camera.

@param cameraMatrix1 First camera matrix.
@param distCoeffs1 First camera distortion parameters.
@param cameraMatrix2 Second camera matrix.
@param distCoeffs2 Second camera distortion parameters.
@param imageSize Size of the image used for stereo calibration.
@param R Rotation matrix between the coordinate systems of the first and the second cameras.
@param T Translation vector between coordinate systems of the cameras.
@param R1 Output 3x3 rectification transform (rotation matrix) for the first camera.
@param R2 Output 3x3 rectification transform (rotation matrix) for the second camera.
@param P1 Output 3x4 projection matrix in the new (rectified) coordinate systems for the first
camera.
@param P2 Output 3x4 projection matrix in the new (rectified) coordinate systems for the second
camera.
@param Q Output \f$4 \times 4\f$ disparity-to-depth mapping matrix (see reprojectImageTo3D ).
@param flags Operation flags that may be zero or CALIB_ZERO_DISPARITY . If the flag is set,
the function makes the principal points of each camera have the same pixel coordinates in the
rectified views. And if the flag is not set, the function may still shift the images in the
horizontal or vertical direction (depending on the orientation of epipolar lines) to maximize the
useful image area.
@param alpha Free scaling parameter. If it is -1 or absent, the function performs the default
scaling. Otherwise, the parameter should be between 0 and 1. alpha=0 means that the rectified
images are zoomed and shifted so that only valid pixels are visible (no black areas after
rectification). alpha=1 means that the rectified image is decimated and shifted so that all the
pixels from the original images from the cameras are retained in the rectified images (no source
image pixels are lost). Obviously, any intermediate value yields an intermediate result between
those two extreme cases.
@param newImageSize New image resolution after rectification. The same size should be passed to
initUndistortRectifyMap (see the stereo_calib.cpp sample in OpenCV samples directory). When (0,0)
is passed (default), it is set to the original imageSize . Setting it to larger value can help you
preserve details in the original image, especially when there is a big radial distortion.
@param validPixROI1 Optional output rectangles inside the rectified images where all the pixels
are valid. If alpha=0 , the ROIs cover the whole images. Otherwise, they are likely to be smaller
(see the picture below).
@param validPixROI2 Optional output rectangles inside the rectified images where all the pixels
are valid. If alpha=0 , the ROIs cover the whole images. Otherwise, they are likely to be smaller
(see the picture below).

The function computes the rotation matrices for each camera that (virtually) make both camera image
planes the same plane. Consequently, this makes all the epipolar lines parallel and thus simplifies
the dense stereo correspondence problem. The function takes the matrices computed by stereoCalibrate
as input. As output, it provides two rotation matrices and also two projection matrices in the new
coordinates. The function distinguishes the following two cases:

-   **Horizontal stereo**: the first and the second camera views are shifted relative to each other
    mainly along the x axis (with possible small vertical shift). In the rectified images, the
    corresponding epipolar lines in the left and right cameras are horizontal and have the same
    y-coordinate. P1 and P2 look like:

    \f[\texttt{P1} = \begin{bmatrix} f & 0 & cx_1 & 0 \\ 0 & f & cy & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}\f]

    \f[\texttt{P2} = \begin{bmatrix} f & 0 & cx_2 & T_x*f \\ 0 & f & cy & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} ,\f]

    where \f$T_x\f$ is a horizontal shift between the cameras and \f$cx_1=cx_2\f$ if
    CALIB_ZERO_DISPARITY is set.

-   **Vertical stereo**: the first and the second camera views are shifted relative to each other
    mainly in vertical direction (and probably a bit in the horizontal direction too). The epipolar
    lines in the rectified images are vertical and have the same x-coordinate. P1 and P2 look like:

    \f[\texttt{P1} = \begin{bmatrix} f & 0 & cx & 0 \\ 0 & f & cy_1 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}\f]

    \f[\texttt{P2} = \begin{bmatrix} f & 0 & cx & 0 \\ 0 & f & cy_2 & T_y*f \\ 0 & 0 & 1 & 0 \end{bmatrix} ,\f]

    where \f$T_y\f$ is a vertical shift between the cameras and \f$cy_1=cy_2\f$ if CALIB_ZERO_DISPARITY is
    set.

As you can see, the first three columns of P1 and P2 will effectively be the new "rectified" camera
matrices. The matrices, together with R1 and R2 , can then be passed to initUndistortRectifyMap to
initialize the rectification map for each camera.

See below the screenshot from the stereo_calib.cpp sample. Some red horizontal lines pass through
the corresponding image regions. This means that the images are well rectified, which is what most
stereo correspondence algorithms rely on. The green rectangles are roi1 and roi2 . You see that
their interiors are all valid pixels.

![image](pics/stereo_undistort.jpg)
 */
CV_EXPORTS_W void stereoRectify( InputArray cameraMatrix1, InputArray distCoeffs1,
                                 InputArray cameraMatrix2, InputArray distCoeffs2,
                                 Size imageSize, InputArray R, InputArray T,
                                 OutputArray R1, OutputArray R2,
                                 OutputArray P1, OutputArray P2,
                                 OutputArray Q, int flags = CALIB_ZERO_DISPARITY,
                                 double alpha = -1, Size newImageSize = Size(),
                                 CV_OUT Rect* validPixROI1 = 0, CV_OUT Rect* validPixROI2 = 0 );

/** @brief Computes a rectification transform for an uncalibrated stereo camera.

@param points1 Array of feature points in the first image.
@param points2 The corresponding points in the second image. The same formats as in
findFundamentalMat are supported.
@param F Input fundamental matrix. It can be computed from the same set of point pairs using
findFundamentalMat .
@param imgSize Size of the image.
@param H1 Output rectification homography matrix for the first image.
@param H2 Output rectification homography matrix for the second image.
@param threshold Optional threshold used to filter out the outliers. If the parameter is greater
than zero, all the point pairs that do not comply with the epipolar geometry (that is, the points
for which \f$|\texttt{points2[i]}^T*\texttt{F}*\texttt{points1[i]}|>\texttt{threshold}\f$ ) are
rejected prior to computing the homographies. Otherwise, all the points are considered inliers.

The function computes the rectification transformations without knowing intrinsic parameters of the
cameras and their relative position in the space, which explains the suffix "uncalibrated". Another
related difference from stereoRectify is that the function outputs not the rectification
transformations in the object (3D) space, but the planar perspective transformations encoded by the
homography matrices H1 and H2 . The function implements the algorithm @cite Hartley99 .

@note
   While the algorithm does not need to know the intrinsic parameters of the cameras, it heavily
    depends on the epipolar geometry. Therefore, if the camera lenses have a significant distortion,
    it would be better to correct it before computing the fundamental matrix and calling this
    function. For example, distortion coefficients can be estimated for each head of stereo camera
    separately by using calibrateCamera . Then, the images can be corrected using undistort , or
    just the point coordinates can be corrected with undistortPoints .
 */
CV_EXPORTS_W bool stereoRectifyUncalibrated( InputArray points1, InputArray points2,
                                             InputArray F, Size imgSize,
                                             OutputArray H1, OutputArray H2,
                                             double threshold = 5 );

//! computes the rectification transformations for 3-head camera, where all the heads are on the same line.
CV_EXPORTS_W float rectify3Collinear( InputArray cameraMatrix1, InputArray distCoeffs1,
                                      InputArray cameraMatrix2, InputArray distCoeffs2,
                                      InputArray cameraMatrix3, InputArray distCoeffs3,
                                      InputArrayOfArrays imgpt1, InputArrayOfArrays imgpt3,
                                      Size imageSize, InputArray R12, InputArray T12,
                                      InputArray R13, InputArray T13,
                                      OutputArray R1, OutputArray R2, OutputArray R3,
                                      OutputArray P1, OutputArray P2, OutputArray P3,
                                      OutputArray Q, double alpha, Size newImgSize,
                                      CV_OUT Rect* roi1, CV_OUT Rect* roi2, int flags );

/** @brief Returns the new camera matrix based on the free scaling parameter.

@param cameraMatrix Input camera matrix.
@param distCoeffs Input vector of distortion coefficients
\f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6 [, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$ of
4, 5, 8, 12 or 14 elements. If the vector is NULL/empty, the zero distortion coefficients are
assumed.
@param imageSize Original image size.
@param alpha Free scaling parameter between 0 (when all the pixels in the undistorted image are
valid) and 1 (when all the source image pixels are retained in the undistorted image). See
stereoRectify for details.
@param newImgSize Image size after rectification. By default, it is set to imageSize .
@param validPixROI Optional output rectangle that outlines all-good-pixels region in the
undistorted image. See roi1, roi2 description in stereoRectify .
@param centerPrincipalPoint Optional flag that indicates whether in the new camera matrix the
principal point should be at the image center or not. By default, the principal point is chosen to
best fit a subset of the source image (determined by alpha) to the corrected image.
@return new_camera_matrix Output new camera matrix.

The function computes and returns the optimal new camera matrix based on the free scaling parameter.
By varying this parameter, you may retrieve only sensible pixels alpha=0 , keep all the original
image pixels if there is valuable information in the corners alpha=1 , or get something in between.
When alpha\>0 , the undistorted result is likely to have some black pixels corresponding to
"virtual" pixels outside of the captured distorted image. The original camera matrix, distortion
coefficients, the computed new camera matrix, and newImageSize should be passed to
initUndistortRectifyMap to produce the maps for remap .
 */
CV_EXPORTS_W Mat getOptimalNewCameraMatrix( InputArray cameraMatrix, InputArray distCoeffs,
                                            Size imageSize, double alpha, Size newImgSize = Size(),
                                            CV_OUT Rect* validPixROI = 0,
                                            bool centerPrincipalPoint = false);

/** @brief Computes Hand-Eye calibration: \f$_{}^{g}\textrm{T}_c\f$

@param[in] R_gripper2base Rotation part extracted from the homogeneous matrix that transforms a point
expressed in the gripper frame to the robot base frame (\f$_{}^{b}\textrm{T}_g\f$).
This is a vector (`vector<Mat>`) that contains the rotation matrices for all the transformations
from gripper frame to robot base frame.
@param[in] t_gripper2base Translation part extracted from the homogeneous matrix that transforms a point
expressed in the gripper frame to the robot base frame (\f$_{}^{b}\textrm{T}_g\f$).
This is a vector (`vector<Mat>`) that contains the translation vectors for all the transformations
from gripper frame to robot base frame.
@param[in] R_target2cam Rotation part extracted from the homogeneous matrix that transforms a point
expressed in the target frame to the camera frame (\f$_{}^{c}\textrm{T}_t\f$).
This is a vector (`vector<Mat>`) that contains the rotation matrices for all the transformations
from calibration target frame to camera frame.
@param[in] t_target2cam Rotation part extracted from the homogeneous matrix that transforms a point
expressed in the target frame to the camera frame (\f$_{}^{c}\textrm{T}_t\f$).
This is a vector (`vector<Mat>`) that contains the translation vectors for all the transformations
from calibration target frame to camera frame.
@param[out] R_cam2gripper Estimated rotation part extracted from the homogeneous matrix that transforms a point
expressed in the camera frame to the gripper frame (\f$_{}^{g}\textrm{T}_c\f$).
@param[out] t_cam2gripper Estimated translation part extracted from the homogeneous matrix that transforms a point
expressed in the camera frame to the gripper frame (\f$_{}^{g}\textrm{T}_c\f$).
@param[in] method One of the implemented Hand-Eye calibration method, see cv::HandEyeCalibrationMethod

The function performs the Hand-Eye calibration using various methods. One approach consists in estimating the
rotation then the translation (separable solutions) and the following methods are implemented:
  - R. Tsai, R. Lenz A New Technique for Fully Autonomous and Efficient 3D Robotics Hand/EyeCalibration \cite Tsai89
  - F. Park, B. Martin Robot Sensor Calibration: Solving AX = XB on the Euclidean Group \cite Park94
  - R. Horaud, F. Dornaika Hand-Eye Calibration \cite Horaud95

Another approach consists in estimating simultaneously the rotation and the translation (simultaneous solutions),
with the following implemented method:
  - N. Andreff, R. Horaud, B. Espiau On-line Hand-Eye Calibration \cite Andreff99
  - K. Daniilidis Hand-Eye Calibration Using Dual Quaternions \cite Daniilidis98

The following picture describes the Hand-Eye calibration problem where the transformation between a camera ("eye")
mounted on a robot gripper ("hand") has to be estimated.

![](pics/hand-eye_figure.png)

The calibration procedure is the following:
  - a static calibration pattern is used to estimate the transformation between the target frame
  and the camera frame
  - the robot gripper is moved in order to acquire several poses
  - for each pose, the homogeneous transformation between the gripper frame and the robot base frame is recorded using for
  instance the robot kinematics
\f[
    \begin{bmatrix}
    X_b\\
    Y_b\\
    Z_b\\
    1
    \end{bmatrix}
    =
    \begin{bmatrix}
    _{}^{b}\textrm{R}_g & _{}^{b}\textrm{t}_g \\
    0_{1 \times 3} & 1
    \end{bmatrix}
    \begin{bmatrix}
    X_g\\
    Y_g\\
    Z_g\\
    1
    \end{bmatrix}
\f]
  - for each pose, the homogeneous transformation between the calibration target frame and the camera frame is recorded using
  for instance a pose estimation method (PnP) from 2D-3D point correspondences
\f[
    \begin{bmatrix}
    X_c\\
    Y_c\\
    Z_c\\
    1
    \end{bmatrix}
    =
    \begin{bmatrix}
    _{}^{c}\textrm{R}_t & _{}^{c}\textrm{t}_t \\
    0_{1 \times 3} & 1
    \end{bmatrix}
    \begin{bmatrix}
    X_t\\
    Y_t\\
    Z_t\\
    1
    \end{bmatrix}
\f]

The Hand-Eye calibration procedure returns the following homogeneous transformation
\f[
    \begin{bmatrix}
    X_g\\
    Y_g\\
    Z_g\\
    1
    \end{bmatrix}
    =
    \begin{bmatrix}
    _{}^{g}\textrm{R}_c & _{}^{g}\textrm{t}_c \\
    0_{1 \times 3} & 1
    \end{bmatrix}
    \begin{bmatrix}
    X_c\\
    Y_c\\
    Z_c\\
    1
    \end{bmatrix}
\f]

This problem is also known as solving the \f$\mathbf{A}\mathbf{X}=\mathbf{X}\mathbf{B}\f$ equation:
\f[
    \begin{align*}
    ^{b}{\textrm{T}_g}^{(1)} \hspace{0.2em} ^{g}\textrm{T}_c \hspace{0.2em} ^{c}{\textrm{T}_t}^{(1)} &=
    \hspace{0.1em} ^{b}{\textrm{T}_g}^{(2)} \hspace{0.2em} ^{g}\textrm{T}_c \hspace{0.2em} ^{c}{\textrm{T}_t}^{(2)} \\

    (^{b}{\textrm{T}_g}^{(2)})^{-1} \hspace{0.2em} ^{b}{\textrm{T}_g}^{(1)} \hspace{0.2em} ^{g}\textrm{T}_c &=
    \hspace{0.1em} ^{g}\textrm{T}_c \hspace{0.2em} ^{c}{\textrm{T}_t}^{(2)} (^{c}{\textrm{T}_t}^{(1)})^{-1} \\

    \textrm{A}_i \textrm{X} &= \textrm{X} \textrm{B}_i \\
    \end{align*}
\f]

\note
Additional information can be found on this [website](http://campar.in.tum.de/Chair/HandEyeCalibration).
\note
A minimum of 2 motions with non parallel rotation axes are necessary to determine the hand-eye transformation.
So at least 3 different poses are required, but it is strongly recommended to use many more poses.

 */
CV_EXPORTS_W void calibrateHandEye( InputArrayOfArrays R_gripper2base, InputArrayOfArrays t_gripper2base,
                                    InputArrayOfArrays R_target2cam, InputArrayOfArrays t_target2cam,
                                    OutputArray R_cam2gripper, OutputArray t_cam2gripper,
                                    HandEyeCalibrationMethod method=CALIB_HAND_EYE_TSAI );

/** @brief Converts points from Euclidean to homogeneous space.

@param src Input vector of N-dimensional points.
@param dst Output vector of N+1-dimensional points.

The function converts points from Euclidean to homogeneous space by appending 1's to the tuple of
point coordinates. That is, each point (x1, x2, ..., xn) is converted to (x1, x2, ..., xn, 1).
 */
CV_EXPORTS_W void convertPointsToHomogeneous( InputArray src, OutputArray dst );

/** @brief Converts points from homogeneous to Euclidean space.

@param src Input vector of N-dimensional points.
@param dst Output vector of N-1-dimensional points.

The function converts points homogeneous to Euclidean space using perspective projection. That is,
each point (x1, x2, ... x(n-1), xn) is converted to (x1/xn, x2/xn, ..., x(n-1)/xn). When xn=0, the
output point coordinates will be (0,0,0,...).
 */
CV_EXPORTS_W void convertPointsFromHomogeneous( InputArray src, OutputArray dst );

/** @brief Converts points to/from homogeneous coordinates.

@param src Input array or vector of 2D, 3D, or 4D points.
@param dst Output vector of 2D, 3D, or 4D points.

The function converts 2D or 3D points from/to homogeneous coordinates by calling either
convertPointsToHomogeneous or convertPointsFromHomogeneous.

@note The function is obsolete. Use one of the previous two functions instead.
 */
CV_EXPORTS void convertPointsHomogeneous( InputArray src, OutputArray dst );

/** @brief Calculates a fundamental matrix from the corresponding points in two images.

@param points1 Array of N points from the first image. The point coordinates should be
floating-point (single or double precision).
@param points2 Array of the second image points of the same size and format as points1 .
@param method Method for computing a fundamental matrix.
-   **CV_FM_7POINT** for a 7-point algorithm. \f$N = 7\f$
-   **CV_FM_8POINT** for an 8-point algorithm. \f$N \ge 8\f$
-   **CV_FM_RANSAC** for the RANSAC algorithm. \f$N \ge 8\f$
-   **CV_FM_LMEDS** for the LMedS algorithm. \f$N \ge 8\f$
@param ransacReprojThreshold Parameter used only for RANSAC. It is the maximum distance from a point to an epipolar
line in pixels, beyond which the point is considered an outlier and is not used for computing the
final fundamental matrix. It can be set to something like 1-3, depending on the accuracy of the
point localization, image resolution, and the image noise.
@param confidence Parameter used for the RANSAC and LMedS methods only. It specifies a desirable level
of confidence (probability) that the estimated matrix is correct.
@param mask

The epipolar geometry is described by the following equation:

\f[[p_2; 1]^T F [p_1; 1] = 0\f]

where \f$F\f$ is a fundamental matrix, \f$p_1\f$ and \f$p_2\f$ are corresponding points in the first and the
second images, respectively.

The function calculates the fundamental matrix using one of four methods listed above and returns
the found fundamental matrix. Normally just one matrix is found. But in case of the 7-point
algorithm, the function may return up to 3 solutions ( \f$9 \times 3\f$ matrix that stores all 3
matrices sequentially).

The calculated fundamental matrix may be passed further to computeCorrespondEpilines that finds the
epipolar lines corresponding to the specified points. It can also be passed to
stereoRectifyUncalibrated to compute the rectification transformation. :
@code
    // Example. Estimation of fundamental matrix using the RANSAC algorithm
    int point_count = 100;
    vector<Point2f> points1(point_count);
    vector<Point2f> points2(point_count);

    // initialize the points here ...
    for( int i = 0; i < point_count; i++ )
    {
        points1[i] = ...;
        points2[i] = ...;
    }

    Mat fundamental_matrix =
     findFundamentalMat(points1, points2, FM_RANSAC, 3, 0.99);
@endcode
 */
CV_EXPORTS_W Mat findFundamentalMat( InputArray points1, InputArray points2,
                                     int method = FM_RANSAC,
                                     double ransacReprojThreshold = 3., double confidence = 0.99,
                                     OutputArray mask = noArray() );

/** @overload */
CV_EXPORTS Mat findFundamentalMat( InputArray points1, InputArray points2,
                                   OutputArray mask, int method = FM_RANSAC,
                                   double ransacReprojThreshold = 3., double confidence = 0.99 );

/** @brief Calculates an essential matrix from the corresponding points in two images.

@param points1 Array of N (N \>= 5) 2D points from the first image. The point coordinates should
be floating-point (single or double precision).
@param points2 Array of the second image points of the same size and format as points1 .
@param cameraMatrix Camera matrix \f$K = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$ .
Note that this function assumes that points1 and points2 are feature points from cameras with the
same camera matrix.
@param method Method for computing an essential matrix.
-   **RANSAC** for the RANSAC algorithm.
-   **LMEDS** for the LMedS algorithm.
@param prob Parameter used for the RANSAC or LMedS methods only. It specifies a desirable level of
confidence (probability) that the estimated matrix is correct.
@param threshold Parameter used for RANSAC. It is the maximum distance from a point to an epipolar
line in pixels, beyond which the point is considered an outlier and is not used for computing the
final fundamental matrix. It can be set to something like 1-3, depending on the accuracy of the
point localization, image resolution, and the image noise.
@param mask Output array of N elements, every element of which is set to 0 for outliers and to 1
for the other points. The array is computed only in the RANSAC and LMedS methods.

This function estimates essential matrix based on the five-point algorithm solver in @cite Nister03 .
@cite SteweniusCFS is also a related. The epipolar geometry is described by the following equation:

\f[[p_2; 1]^T K^{-T} E K^{-1} [p_1; 1] = 0\f]

where \f$E\f$ is an essential matrix, \f$p_1\f$ and \f$p_2\f$ are corresponding points in the first and the
second images, respectively. The result of this function may be passed further to
decomposeEssentialMat or recoverPose to recover the relative pose between cameras.
 */
CV_EXPORTS_W Mat findEssentialMat( InputArray points1, InputArray points2,
                                 InputArray cameraMatrix, int method = RANSAC,
                                 double prob = 0.999, double threshold = 1.0,
                                 OutputArray mask = noArray() );

/** @overload
@param points1 Array of N (N \>= 5) 2D points from the first image. The point coordinates should
be floating-point (single or double precision).
@param points2 Array of the second image points of the same size and format as points1 .
@param focal focal length of the camera. Note that this function assumes that points1 and points2
are feature points from cameras with same focal length and principal point.
@param pp principal point of the camera.
@param method Method for computing a fundamental matrix.
-   **RANSAC** for the RANSAC algorithm.
-   **LMEDS** for the LMedS algorithm.
@param threshold Parameter used for RANSAC. It is the maximum distance from a point to an epipolar
line in pixels, beyond which the point is considered an outlier and is not used for computing the
final fundamental matrix. It can be set to something like 1-3, depending on the accuracy of the
point localization, image resolution, and the image noise.
@param prob Parameter used for the RANSAC or LMedS methods only. It specifies a desirable level of
confidence (probability) that the estimated matrix is correct.
@param mask Output array of N elements, every element of which is set to 0 for outliers and to 1
for the other points. The array is computed only in the RANSAC and LMedS methods.

This function differs from the one above that it computes camera matrix from focal length and
principal point:

\f[K =
\begin{bmatrix}
f & 0 & x_{pp}  \\
0 & f & y_{pp}  \\
0 & 0 & 1
\end{bmatrix}\f]
 */
CV_EXPORTS_W Mat findEssentialMat( InputArray points1, InputArray points2,
                                 double focal = 1.0, Point2d pp = Point2d(0, 0),
                                 int method = RANSAC, double prob = 0.999,
                                 double threshold = 1.0, OutputArray mask = noArray() );

/** @brief Decompose an essential matrix to possible rotations and translation.

@param E The input essential matrix.
@param R1 One possible rotation matrix.
@param R2 Another possible rotation matrix.
@param t One possible translation.

This function decompose an essential matrix E using svd decomposition @cite HartleyZ00 . Generally 4
possible poses exists for a given E. They are \f$[R_1, t]\f$, \f$[R_1, -t]\f$, \f$[R_2, t]\f$, \f$[R_2, -t]\f$. By
decomposing E, you can only get the direction of the translation, so the function returns unit t.
 */
CV_EXPORTS_W void decomposeEssentialMat( InputArray E, OutputArray R1, OutputArray R2, OutputArray t );

/** @brief Recover relative camera rotation and translation from an estimated essential matrix and the
corresponding points in two images, using cheirality check. Returns the number of inliers which pass
the check.

@param E The input essential matrix.
@param points1 Array of N 2D points from the first image. The point coordinates should be
floating-point (single or double precision).
@param points2 Array of the second image points of the same size and format as points1 .
@param cameraMatrix Camera matrix \f$K = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$ .
Note that this function assumes that points1 and points2 are feature points from cameras with the
same camera matrix.
@param R Recovered relative rotation.
@param t Recovered relative translation.
@param mask Input/output mask for inliers in points1 and points2.
:   If it is not empty, then it marks inliers in points1 and points2 for then given essential
matrix E. Only these inliers will be used to recover pose. In the output mask only inliers
which pass the cheirality check.
This function decomposes an essential matrix using decomposeEssentialMat and then verifies possible
pose hypotheses by doing cheirality check. The cheirality check basically means that the
triangulated 3D points should have positive depth. Some details can be found in @cite Nister03 .

This function can be used to process output E and mask from findEssentialMat. In this scenario,
points1 and points2 are the same input for findEssentialMat. :
@code
    // Example. Estimation of fundamental matrix using the RANSAC algorithm
    int point_count = 100;
    vector<Point2f> points1(point_count);
    vector<Point2f> points2(point_count);

    // initialize the points here ...
    for( int i = 0; i < point_count; i++ )
    {
        points1[i] = ...;
        points2[i] = ...;
    }

    // cametra matrix with both focal lengths = 1, and principal point = (0, 0)
    Mat cameraMatrix = Mat::eye(3, 3, CV_64F);

    Mat E, R, t, mask;

    E = findEssentialMat(points1, points2, cameraMatrix, RANSAC, 0.999, 1.0, mask);
    recoverPose(E, points1, points2, cameraMatrix, R, t, mask);
@endcode
 */
CV_EXPORTS_W int recoverPose( InputArray E, InputArray points1, InputArray points2,
                            InputArray cameraMatrix, OutputArray R, OutputArray t,
                            InputOutputArray mask = noArray() );

/** @overload
@param E The input essential matrix.
@param points1 Array of N 2D points from the first image. The point coordinates should be
floating-point (single or double precision).
@param points2 Array of the second image points of the same size and format as points1 .
@param R Recovered relative rotation.
@param t Recovered relative translation.
@param focal Focal length of the camera. Note that this function assumes that points1 and points2
are feature points from cameras with same focal length and principal point.
@param pp principal point of the camera.
@param mask Input/output mask for inliers in points1 and points2.
:   If it is not empty, then it marks inliers in points1 and points2 for then given essential
matrix E. Only these inliers will be used to recover pose. In the output mask only inliers
which pass the cheirality check.

This function differs from the one above that it computes camera matrix from focal length and
principal point:

\f[K =
\begin{bmatrix}
f & 0 & x_{pp}  \\
0 & f & y_{pp}  \\
0 & 0 & 1
\end{bmatrix}\f]
 */
CV_EXPORTS_W int recoverPose( InputArray E, InputArray points1, InputArray points2,
                            OutputArray R, OutputArray t,
                            double focal = 1.0, Point2d pp = Point2d(0, 0),
                            InputOutputArray mask = noArray() );

/** @overload
@param E The input essential matrix.
@param points1 Array of N 2D points from the first image. The point coordinates should be
floating-point (single or double precision).
@param points2 Array of the second image points of the same size and format as points1.
@param cameraMatrix Camera matrix \f$K = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$ .
Note that this function assumes that points1 and points2 are feature points from cameras with the
same camera matrix.
@param R Recovered relative rotation.
@param t Recovered relative translation.
@param distanceThresh threshold distance which is used to filter out far away points (i.e. infinite points).
@param mask Input/output mask for inliers in points1 and points2.
:   If it is not empty, then it marks inliers in points1 and points2 for then given essential
matrix E. Only these inliers will be used to recover pose. In the output mask only inliers
which pass the cheirality check.
@param triangulatedPoints 3d points which were reconstructed by triangulation.
 */

CV_EXPORTS_W int recoverPose( InputArray E, InputArray points1, InputArray points2,
                            InputArray cameraMatrix, OutputArray R, OutputArray t, double distanceThresh, InputOutputArray mask = noArray(),
                            OutputArray triangulatedPoints = noArray());

/** @brief For points in an image of a stereo pair, computes the corresponding epilines in the other image.

@param points Input points. \f$N \times 1\f$ or \f$1 \times N\f$ matrix of type CV_32FC2 or
vector\<Point2f\> .
@param whichImage Index of the image (1 or 2) that contains the points .
@param F Fundamental matrix that can be estimated using findFundamentalMat or stereoRectify .
@param lines Output vector of the epipolar lines corresponding to the points in the other image.
Each line \f$ax + by + c=0\f$ is encoded by 3 numbers \f$(a, b, c)\f$ .

For every point in one of the two images of a stereo pair, the function finds the equation of the
corresponding epipolar line in the other image.

From the fundamental matrix definition (see findFundamentalMat ), line \f$l^{(2)}_i\f$ in the second
image for the point \f$p^{(1)}_i\f$ in the first image (when whichImage=1 ) is computed as:

\f[l^{(2)}_i = F p^{(1)}_i\f]

And vice versa, when whichImage=2, \f$l^{(1)}_i\f$ is computed from \f$p^{(2)}_i\f$ as:

\f[l^{(1)}_i = F^T p^{(2)}_i\f]

Line coefficients are defined up to a scale. They are normalized so that \f$a_i^2+b_i^2=1\f$ .
 */
CV_EXPORTS_W void computeCorrespondEpilines( InputArray points, int whichImage,
                                             InputArray F, OutputArray lines );

/** @brief Reconstructs points by triangulation.

@param projMatr1 3x4 projection matrix of the first camera.
@param projMatr2 3x4 projection matrix of the second camera.
@param projPoints1 2xN array of feature points in the first image. In case of c++ version it can
be also a vector of feature points or two-channel matrix of size 1xN or Nx1.
@param projPoints2 2xN array of corresponding points in the second image. In case of c++ version
it can be also a vector of feature points or two-channel matrix of size 1xN or Nx1.
@param points4D 4xN array of reconstructed points in homogeneous coordinates.

The function reconstructs 3-dimensional points (in homogeneous coordinates) by using their
observations with a stereo camera. Projections matrices can be obtained from stereoRectify.

@note
   Keep in mind that all input data should be of float type in order for this function to work.

@sa
   reprojectImageTo3D
 */
CV_EXPORTS_W void triangulatePoints( InputArray projMatr1, InputArray projMatr2,
                                     InputArray projPoints1, InputArray projPoints2,
                                     OutputArray points4D );

/** @brief Refines coordinates of corresponding points.

@param F 3x3 fundamental matrix.
@param points1 1xN array containing the first set of points.
@param points2 1xN array containing the second set of points.
@param newPoints1 The optimized points1.
@param newPoints2 The optimized points2.

The function implements the Optimal Triangulation Method (see Multiple View Geometry for details).
For each given point correspondence points1[i] \<-\> points2[i], and a fundamental matrix F, it
computes the corrected correspondences newPoints1[i] \<-\> newPoints2[i] that minimize the geometric
error \f$d(points1[i], newPoints1[i])^2 + d(points2[i],newPoints2[i])^2\f$ (where \f$d(a,b)\f$ is the
geometric distance between points \f$a\f$ and \f$b\f$ ) subject to the epipolar constraint
\f$newPoints2^T * F * newPoints1 = 0\f$ .
 */
CV_EXPORTS_W void correctMatches( InputArray F, InputArray points1, InputArray points2,
                                  OutputArray newPoints1, OutputArray newPoints2 );

/** @brief Filters off small noise blobs (speckles) in the disparity map

@param img The input 16-bit signed disparity image
@param newVal The disparity value used to paint-off the speckles
@param maxSpeckleSize The maximum speckle size to consider it a speckle. Larger blobs are not
affected by the algorithm
@param maxDiff Maximum difference between neighbor disparity pixels to put them into the same
blob. Note that since StereoBM, StereoSGBM and may be other algorithms return a fixed-point
disparity map, where disparity values are multiplied by 16, this scale factor should be taken into
account when specifying this parameter value.
@param buf The optional temporary buffer to avoid memory allocation within the function.
 */
CV_EXPORTS_W void filterSpeckles( InputOutputArray img, double newVal,
                                  int maxSpeckleSize, double maxDiff,
                                  InputOutputArray buf = noArray() );

//! computes valid disparity ROI from the valid ROIs of the rectified images (that are returned by cv::stereoRectify())
CV_EXPORTS_W Rect getValidDisparityROI( Rect roi1, Rect roi2,
                                        int minDisparity, int numberOfDisparities,
                                        int SADWindowSize );

//! validates disparity using the left-right check. The matrix "cost" should be computed by the stereo correspondence algorithm
CV_EXPORTS_W void validateDisparity( InputOutputArray disparity, InputArray cost,
                                     int minDisparity, int numberOfDisparities,
                                     int disp12MaxDisp = 1 );

/** @brief Reprojects a disparity image to 3D space.

@param disparity Input single-channel 8-bit unsigned, 16-bit signed, 32-bit signed or 32-bit
floating-point disparity image. If 16-bit signed format is used, the values are assumed to have no
fractional bits.
@param _3dImage Output 3-channel floating-point image of the same size as disparity . Each
element of _3dImage(x,y) contains 3D coordinates of the point (x,y) computed from the disparity
map.
@param Q \f$4 \times 4\f$ perspective transformation matrix that can be obtained with stereoRectify.
@param handleMissingValues Indicates, whether the function should handle missing values (i.e.
points where the disparity was not computed). If handleMissingValues=true, then pixels with the
minimal disparity that corresponds to the outliers (see StereoMatcher::compute ) are transformed
to 3D points with a very large Z value (currently set to 10000).
@param ddepth The optional output array depth. If it is -1, the output image will have CV_32F
depth. ddepth can also be set to CV_16S, CV_32S or CV_32F.

The function transforms a single-channel disparity map to a 3-channel image representing a 3D
surface. That is, for each pixel (x,y) and the corresponding disparity d=disparity(x,y) , it
computes:

\f[\begin{array}{l} [X \; Y \; Z \; W]^T =  \texttt{Q} *[x \; y \; \texttt{disparity} (x,y) \; 1]^T  \\ \texttt{\_3dImage} (x,y) = (X/W, \; Y/W, \; Z/W) \end{array}\f]

The matrix Q can be an arbitrary \f$4 \times 4\f$ matrix (for example, the one computed by
stereoRectify). To reproject a sparse set of points {(x,y,d),...} to 3D space, use
perspectiveTransform .
 */
CV_EXPORTS_W void reprojectImageTo3D( InputArray disparity,
                                      OutputArray _3dImage, InputArray Q,
                                      bool handleMissingValues = false,
                                      int ddepth = -1 );

/** @brief Calculates the Sampson Distance between two points.

The function cv::sampsonDistance calculates and returns the first order approximation of the geometric error as:
\f[
sd( \texttt{pt1} , \texttt{pt2} )=
\frac{(\texttt{pt2}^t \cdot \texttt{F} \cdot \texttt{pt1})^2}
{((\texttt{F} \cdot \texttt{pt1})(0))^2 +
((\texttt{F} \cdot \texttt{pt1})(1))^2 +
((\texttt{F}^t \cdot \texttt{pt2})(0))^2 +
((\texttt{F}^t \cdot \texttt{pt2})(1))^2}
\f]
The fundamental matrix may be calculated using the cv::findFundamentalMat function. See @cite HartleyZ00 11.4.3 for details.
@param pt1 first homogeneous 2d point
@param pt2 second homogeneous 2d point
@param F fundamental matrix
@return The computed Sampson distance.
*/
CV_EXPORTS_W double sampsonDistance(InputArray pt1, InputArray pt2, InputArray F);

/** @brief Computes an optimal affine transformation between two 3D point sets.

It computes
\f[
\begin{bmatrix}
x\\
y\\
z\\
\end{bmatrix}
=
\begin{bmatrix}
a_{11} & a_{12} & a_{13}\\
a_{21} & a_{22} & a_{23}\\
a_{31} & a_{32} & a_{33}\\
\end{bmatrix}
\begin{bmatrix}
X\\
Y\\
Z\\
\end{bmatrix}
+
\begin{bmatrix}
b_1\\
b_2\\
b_3\\
\end{bmatrix}
\f]

@param src First input 3D point set containing \f$(X,Y,Z)\f$.
@param dst Second input 3D point set containing \f$(x,y,z)\f$.
@param out Output 3D affine transformation matrix \f$3 \times 4\f$ of the form
\f[
\begin{bmatrix}
a_{11} & a_{12} & a_{13} & b_1\\
a_{21} & a_{22} & a_{23} & b_2\\
a_{31} & a_{32} & a_{33} & b_3\\
\end{bmatrix}
\f]
@param inliers Output vector indicating which points are inliers (1-inlier, 0-outlier).
@param ransacThreshold Maximum reprojection error in the RANSAC algorithm to consider a point as
an inlier.
@param confidence Confidence level, between 0 and 1, for the estimated transformation. Anything
between 0.95 and 0.99 is usually good enough. Values too close to 1 can slow down the estimation
significantly. Values lower than 0.8-0.9 can result in an incorrectly estimated transformation.

The function estimates an optimal 3D affine transformation between two 3D point sets using the
RANSAC algorithm.
 */
CV_EXPORTS_W  int estimateAffine3D(InputArray src, InputArray dst,
                                   OutputArray out, OutputArray inliers,
                                   double ransacThreshold = 3, double confidence = 0.99);

/** @brief Computes an optimal affine transformation between two 2D point sets.

It computes
\f[
\begin{bmatrix}
x\\
y\\
\end{bmatrix}
=
\begin{bmatrix}
a_{11} & a_{12}\\
a_{21} & a_{22}\\
\end{bmatrix}
\begin{bmatrix}
X\\
Y\\
\end{bmatrix}
+
\begin{bmatrix}
b_1\\
b_2\\
\end{bmatrix}
\f]

@param from First input 2D point set containing \f$(X,Y)\f$.
@param to Second input 2D point set containing \f$(x,y)\f$.
@param inliers Output vector indicating which points are inliers (1-inlier, 0-outlier).
@param method Robust method used to compute transformation. The following methods are possible:
-   cv::RANSAC - RANSAC-based robust method
-   cv::LMEDS - Least-Median robust method
RANSAC is the default method.
@param ransacReprojThreshold Maximum reprojection error in the RANSAC algorithm to consider
a point as an inlier. Applies only to RANSAC.
@param maxIters The maximum number of robust method iterations.
@param confidence Confidence level, between 0 and 1, for the estimated transformation. Anything
between 0.95 and 0.99 is usually good enough. Values too close to 1 can slow down the estimation
significantly. Values lower than 0.8-0.9 can result in an incorrectly estimated transformation.
@param refineIters Maximum number of iterations of refining algorithm (Levenberg-Marquardt).
Passing 0 will disable refining, so the output matrix will be output of robust method.

@return Output 2D affine transformation matrix \f$2 \times 3\f$ or empty matrix if transformation
could not be estimated. The returned matrix has the following form:
\f[
\begin{bmatrix}
a_{11} & a_{12} & b_1\\
a_{21} & a_{22} & b_2\\
\end{bmatrix}
\f]

The function estimates an optimal 2D affine transformation between two 2D point sets using the
selected robust algorithm.

The computed transformation is then refined further (using only inliers) with the
Levenberg-Marquardt method to reduce the re-projection error even more.

@note
The RANSAC method can handle practically any ratio of outliers but needs a threshold to
distinguish inliers from outliers. The method LMeDS does not need any threshold but it works
correctly only when there are more than 50% of inliers.

@sa estimateAffinePartial2D, getAffineTransform
*/
CV_EXPORTS_W cv::Mat estimateAffine2D(InputArray from, InputArray to, OutputArray inliers = noArray(),
                                  int method = RANSAC, double ransacReprojThreshold = 3,
                                  size_t maxIters = 2000, double confidence = 0.99,
                                  size_t refineIters = 10);

/** @brief Computes an optimal limited affine transformation with 4 degrees of freedom between
two 2D point sets.

@param from First input 2D point set.
@param to Second input 2D point set.
@param inliers Output vector indicating which points are inliers.
@param method Robust method used to compute transformation. The following methods are possible:
-   cv::RANSAC - RANSAC-based robust method
-   cv::LMEDS - Least-Median robust method
RANSAC is the default method.
@param ransacReprojThreshold Maximum reprojection error in the RANSAC algorithm to consider
a point as an inlier. Applies only to RANSAC.
@param maxIters The maximum number of robust method iterations.
@param confidence Confidence level, between 0 and 1, for the estimated transformation. Anything
between 0.95 and 0.99 is usually good enough. Values too close to 1 can slow down the estimation
significantly. Values lower than 0.8-0.9 can result in an incorrectly estimated transformation.
@param refineIters Maximum number of iterations of refining algorithm (Levenberg-Marquardt).
Passing 0 will disable refining, so the output matrix will be output of robust method.

@return Output 2D affine transformation (4 degrees of freedom) matrix \f$2 \times 3\f$ or
empty matrix if transformation could not be estimated.

The function estimates an optimal 2D affine transformation with 4 degrees of freedom limited to
combinations of translation, rotation, and uniform scaling. Uses the selected algorithm for robust
estimation.

The computed transformation is then refined further (using only inliers) with the
Levenberg-Marquardt method to reduce the re-projection error even more.

Estimated transformation matrix is:
\f[ \begin{bmatrix} \cos(\theta) \cdot s & -\sin(\theta) \cdot s & t_x \\
                \sin(\theta) \cdot s & \cos(\theta) \cdot s & t_y
\end{bmatrix} \f]
Where \f$ \theta \f$ is the rotation angle, \f$ s \f$ the scaling factor and \f$ t_x, t_y \f$ are
translations in \f$ x, y \f$ axes respectively.

@note
The RANSAC method can handle practically any ratio of outliers but need a threshold to
distinguish inliers from outliers. The method LMeDS does not need any threshold but it works
correctly only when there are more than 50% of inliers.

@sa estimateAffine2D, getAffineTransform
*/
CV_EXPORTS_W cv::Mat estimateAffinePartial2D(InputArray from, InputArray to, OutputArray inliers = noArray(),
                                  int method = RANSAC, double ransacReprojThreshold = 3,
                                  size_t maxIters = 2000, double confidence = 0.99,
                                  size_t refineIters = 10);

/** @example samples/cpp/tutorial_code/features2D/Homography/decompose_homography.cpp
An example program with homography decomposition.

Check @ref tutorial_homography "the corresponding tutorial" for more details.
*/

/** @brief Decompose a homography matrix to rotation(s), translation(s) and plane normal(s).

@param H The input homography matrix between two images.
@param K The input intrinsic camera calibration matrix.
@param rotations Array of rotation matrices.
@param translations Array of translation matrices.
@param normals Array of plane normal matrices.

This function extracts relative camera motion between two views observing a planar object from the
homography H induced by the plane. The intrinsic camera matrix K must also be provided. The function
may return up to four mathematical solution sets. At least two of the solutions may further be
invalidated if point correspondences are available by applying positive depth constraint (all points
must be in front of the camera). The decomposition method is described in detail in @cite Malis .
 */
CV_EXPORTS_W int decomposeHomographyMat(InputArray H,
                                        InputArray K,
                                        OutputArrayOfArrays rotations,
                                        OutputArrayOfArrays translations,
                                        OutputArrayOfArrays normals);

/** @brief Filters homography decompositions based on additional information.

@param rotations Vector of rotation matrices.
@param normals Vector of plane normal matrices.
@param beforePoints Vector of (rectified) visible reference points before the homography is applied
@param afterPoints Vector of (rectified) visible reference points after the homography is applied
@param possibleSolutions Vector of int indices representing the viable solution set after filtering
@param pointsMask optional Mat/Vector of 8u type representing the mask for the inliers as given by the findHomography function

This function is intended to filter the output of the decomposeHomographyMat based on additional
information as described in @cite Malis . The summary of the method: the decomposeHomographyMat function
returns 2 unique solutions and their "opposites" for a total of 4 solutions. If we have access to the
sets of points visible in the camera frame before and after the homography transformation is applied,
we can determine which are the true potential solutions and which are the opposites by verifying which
homographies are consistent with all visible reference points being in front of the camera. The inputs
are left unchanged; the filtered solution set is returned as indices into the existing one.

*/
CV_EXPORTS_W void filterHomographyDecompByVisibleRefpoints(InputArrayOfArrays rotations,
                                                           InputArrayOfArrays normals,
                                                           InputArray beforePoints,
                                                           InputArray afterPoints,
                                                           OutputArray possibleSolutions,
                                                           InputArray pointsMask = noArray());

/** @brief The base class for stereo correspondence algorithms.
 */
class CV_EXPORTS_W StereoMatcher : public Algorithm
{
public:
    enum { DISP_SHIFT = 4,
           DISP_SCALE = (1 << DISP_SHIFT)
         };

    /** @brief Computes disparity map for the specified stereo pair

    @param left Left 8-bit single-channel image.
    @param right Right image of the same size and the same type as the left one.
    @param disparity Output disparity map. It has the same size as the input images. Some algorithms,
    like StereoBM or StereoSGBM compute 16-bit fixed-point disparity map (where each disparity value
    has 4 fractional bits), whereas other algorithms output 32-bit floating-point disparity map.
     */
    CV_WRAP virtual void compute( InputArray left, InputArray right,
                                  OutputArray disparity ) = 0;

    CV_WRAP virtual int getMinDisparity() const = 0;
    CV_WRAP virtual void setMinDisparity(int minDisparity) = 0;

    CV_WRAP virtual int getNumDisparities() const = 0;
    CV_WRAP virtual void setNumDisparities(int numDisparities) = 0;

    CV_WRAP virtual int getBlockSize() const = 0;
    CV_WRAP virtual void setBlockSize(int blockSize) = 0;

    CV_WRAP virtual int getSpeckleWindowSize() const = 0;
    CV_WRAP virtual void setSpeckleWindowSize(int speckleWindowSize) = 0;

    CV_WRAP virtual int getSpeckleRange() const = 0;
    CV_WRAP virtual void setSpeckleRange(int speckleRange) = 0;

    CV_WRAP virtual int getDisp12MaxDiff() const = 0;
    CV_WRAP virtual void setDisp12MaxDiff(int disp12MaxDiff) = 0;
};


/** @brief Class for computing stereo correspondence using the block matching algorithm, introduced and
contributed to OpenCV by K. Konolige.
 */
class CV_EXPORTS_W StereoBM : public StereoMatcher
{
public:
    enum { PREFILTER_NORMALIZED_RESPONSE = 0,
           PREFILTER_XSOBEL              = 1
         };

    CV_WRAP virtual int getPreFilterType() const = 0;
    CV_WRAP virtual void setPreFilterType(int preFilterType) = 0;

    CV_WRAP virtual int getPreFilterSize() const = 0;
    CV_WRAP virtual void setPreFilterSize(int preFilterSize) = 0;

    CV_WRAP virtual int getPreFilterCap() const = 0;
    CV_WRAP virtual void setPreFilterCap(int preFilterCap) = 0;

    CV_WRAP virtual int getTextureThreshold() const = 0;
    CV_WRAP virtual void setTextureThreshold(int textureThreshold) = 0;

    CV_WRAP virtual int getUniquenessRatio() const = 0;
    CV_WRAP virtual void setUniquenessRatio(int uniquenessRatio) = 0;

    CV_WRAP virtual int getSmallerBlockSize() const = 0;
    CV_WRAP virtual void setSmallerBlockSize(int blockSize) = 0;

    CV_WRAP virtual Rect getROI1() const = 0;
    CV_WRAP virtual void setROI1(Rect roi1) = 0;

    CV_WRAP virtual Rect getROI2() const = 0;
    CV_WRAP virtual void setROI2(Rect roi2) = 0;

    /** @brief Creates StereoBM object

    @param numDisparities the disparity search range. For each pixel algorithm will find the best
    disparity from 0 (default minimum disparity) to numDisparities. The search range can then be
    shifted by changing the minimum disparity.
    @param blockSize the linear size of the blocks compared by the algorithm. The size should be odd
    (as the block is centered at the current pixel). Larger block size implies smoother, though less
    accurate disparity map. Smaller block size gives more detailed disparity map, but there is higher
    chance for algorithm to find a wrong correspondence.

    The function create StereoBM object. You can then call StereoBM::compute() to compute disparity for
    a specific stereo pair.
     */
    CV_WRAP static Ptr<StereoBM> create(int numDisparities = 0, int blockSize = 21);
};

/** @brief The class implements the modified H. Hirschmuller algorithm @cite HH08 that differs from the original
one as follows:

-   By default, the algorithm is single-pass, which means that you consider only 5 directions
instead of 8. Set mode=StereoSGBM::MODE_HH in createStereoSGBM to run the full variant of the
algorithm but beware that it may consume a lot of memory.
-   The algorithm matches blocks, not individual pixels. Though, setting blockSize=1 reduces the
blocks to single pixels.
-   Mutual information cost function is not implemented. Instead, a simpler Birchfield-Tomasi
sub-pixel metric from @cite BT98 is used. Though, the color images are supported as well.
-   Some pre- and post- processing steps from K. Konolige algorithm StereoBM are included, for
example: pre-filtering (StereoBM::PREFILTER_XSOBEL type) and post-filtering (uniqueness
check, quadratic interpolation and speckle filtering).

@note
   -   (Python) An example illustrating the use of the StereoSGBM matching algorithm can be found
        at opencv_source_code/samples/python/stereo_match.py
 */
class CV_EXPORTS_W StereoSGBM : public StereoMatcher
{
public:
    enum
    {
        MODE_SGBM = 0,
        MODE_HH   = 1,
        MODE_SGBM_3WAY = 2,
        MODE_HH4  = 3
    };

    CV_WRAP virtual int getPreFilterCap() const = 0;
    CV_WRAP virtual void setPreFilterCap(int preFilterCap) = 0;

    CV_WRAP virtual int getUniquenessRatio() const = 0;
    CV_WRAP virtual void setUniquenessRatio(int uniquenessRatio) = 0;

    CV_WRAP virtual int getP1() const = 0;
    CV_WRAP virtual void setP1(int P1) = 0;

    CV_WRAP virtual int getP2() const = 0;
    CV_WRAP virtual void setP2(int P2) = 0;

    CV_WRAP virtual int getMode() const = 0;
    CV_WRAP virtual void setMode(int mode) = 0;

    /** @brief Creates StereoSGBM object

    @param minDisparity Minimum possible disparity value. Normally, it is zero but sometimes
    rectification algorithms can shift images, so this parameter needs to be adjusted accordingly.
    @param numDisparities Maximum disparity minus minimum disparity. The value is always greater than
    zero. In the current implementation, this parameter must be divisible by 16.
    @param blockSize Matched block size. It must be an odd number \>=1 . Normally, it should be
    somewhere in the 3..11 range.
    @param P1 The first parameter controlling the disparity smoothness. See below.
    @param P2 The second parameter controlling the disparity smoothness. The larger the values are,
    the smoother the disparity is. P1 is the penalty on the disparity change by plus or minus 1
    between neighbor pixels. P2 is the penalty on the disparity change by more than 1 between neighbor
    pixels. The algorithm requires P2 \> P1 . See stereo_match.cpp sample where some reasonably good
    P1 and P2 values are shown (like 8\*number_of_image_channels\*SADWindowSize\*SADWindowSize and
    32\*number_of_image_channels\*SADWindowSize\*SADWindowSize , respectively).
    @param disp12MaxDiff Maximum allowed difference (in integer pixel units) in the left-right
    disparity check. Set it to a non-positive value to disable the check.
    @param preFilterCap Truncation value for the prefiltered image pixels. The algorithm first
    computes x-derivative at each pixel and clips its value by [-preFilterCap, preFilterCap] interval.
    The result values are passed to the Birchfield-Tomasi pixel cost function.
    @param uniquenessRatio Margin in percentage by which the best (minimum) computed cost function
    value should "win" the second best value to consider the found match correct. Normally, a value
    within the 5-15 range is good enough.
    @param speckleWindowSize Maximum size of smooth disparity regions to consider their noise speckles
    and invalidate. Set it to 0 to disable speckle filtering. Otherwise, set it somewhere in the
    50-200 range.
    @param speckleRange Maximum disparity variation within each connected component. If you do speckle
    filtering, set the parameter to a positive value, it will be implicitly multiplied by 16.
    Normally, 1 or 2 is good enough.
    @param mode Set it to StereoSGBM::MODE_HH to run the full-scale two-pass dynamic programming
    algorithm. It will consume O(W\*H\*numDisparities) bytes, which is large for 640x480 stereo and
    huge for HD-size pictures. By default, it is set to false .

    The first constructor initializes StereoSGBM with all the default parameters. So, you only have to
    set StereoSGBM::numDisparities at minimum. The second constructor enables you to set each parameter
    to a custom value.
     */
    CV_WRAP static Ptr<StereoSGBM> create(int minDisparity = 0, int numDisparities = 16, int blockSize = 3,
                                          int P1 = 0, int P2 = 0, int disp12MaxDiff = 0,
                                          int preFilterCap = 0, int uniquenessRatio = 0,
                                          int speckleWindowSize = 0, int speckleRange = 0,
                                          int mode = StereoSGBM::MODE_SGBM);
};


//! cv::undistort mode
enum UndistortTypes
{
    PROJ_SPHERICAL_ORTHO  = 0,
    PROJ_SPHERICAL_EQRECT = 1
};

/** @brief Transforms an image to compensate for lens distortion.

The function transforms an image to compensate radial and tangential lens distortion.

The function is simply a combination of #initUndistortRectifyMap (with unity R ) and #remap
(with bilinear interpolation). See the former function for details of the transformation being
performed.

Those pixels in the destination image, for which there is no correspondent pixels in the source
image, are filled with zeros (black color).

A particular subset of the source image that will be visible in the corrected image can be regulated
by newCameraMatrix. You can use #getOptimalNewCameraMatrix to compute the appropriate
newCameraMatrix depending on your requirements.

The camera matrix and the distortion parameters can be determined using #calibrateCamera. If
the resolution of images is different from the resolution used at the calibration stage, \f$f_x,
f_y, c_x\f$ and \f$c_y\f$ need to be scaled accordingly, while the distortion coefficients remain
the same.

@param src Input (distorted) image.
@param dst Output (corrected) image that has the same size and type as src .
@param cameraMatrix Input camera matrix \f$A = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$ .
@param distCoeffs Input vector of distortion coefficients
\f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6[, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$
of 4, 5, 8, 12 or 14 elements. If the vector is NULL/empty, the zero distortion coefficients are assumed.
@param newCameraMatrix Camera matrix of the distorted image. By default, it is the same as
cameraMatrix but you may additionally scale and shift the result by using a different matrix.
 */
CV_EXPORTS_W void undistort( InputArray src, OutputArray dst,
                             InputArray cameraMatrix,
                             InputArray distCoeffs,
                             InputArray newCameraMatrix = noArray() );

/** @brief Computes the undistortion and rectification transformation map.

The function computes the joint undistortion and rectification transformation and represents the
result in the form of maps for remap. The undistorted image looks like original, as if it is
captured with a camera using the camera matrix =newCameraMatrix and zero distortion. In case of a
monocular camera, newCameraMatrix is usually equal to cameraMatrix, or it can be computed by
#getOptimalNewCameraMatrix for a better control over scaling. In case of a stereo camera,
newCameraMatrix is normally set to P1 or P2 computed by #stereoRectify .

Also, this new camera is oriented differently in the coordinate space, according to R. That, for
example, helps to align two heads of a stereo camera so that the epipolar lines on both images
become horizontal and have the same y- coordinate (in case of a horizontally aligned stereo camera).

The function actually builds the maps for the inverse mapping algorithm that is used by remap. That
is, for each pixel \f$(u, v)\f$ in the destination (corrected and rectified) image, the function
computes the corresponding coordinates in the source image (that is, in the original image from
camera). The following process is applied:
\f[
\begin{array}{l}
x  \leftarrow (u - {c'}_x)/{f'}_x  \\
y  \leftarrow (v - {c'}_y)/{f'}_y  \\
{[X\,Y\,W]} ^T  \leftarrow R^{-1}*[x \, y \, 1]^T  \\
x'  \leftarrow X/W  \\
y'  \leftarrow Y/W  \\
r^2  \leftarrow x'^2 + y'^2 \\
x''  \leftarrow x' \frac{1 + k_1 r^2 + k_2 r^4 + k_3 r^6}{1 + k_4 r^2 + k_5 r^4 + k_6 r^6}
+ 2p_1 x' y' + p_2(r^2 + 2 x'^2)  + s_1 r^2 + s_2 r^4\\
y''  \leftarrow y' \frac{1 + k_1 r^2 + k_2 r^4 + k_3 r^6}{1 + k_4 r^2 + k_5 r^4 + k_6 r^6}
+ p_1 (r^2 + 2 y'^2) + 2 p_2 x' y' + s_3 r^2 + s_4 r^4 \\
s\vecthree{x'''}{y'''}{1} =
\vecthreethree{R_{33}(\tau_x, \tau_y)}{0}{-R_{13}((\tau_x, \tau_y)}
{0}{R_{33}(\tau_x, \tau_y)}{-R_{23}(\tau_x, \tau_y)}
{0}{0}{1} R(\tau_x, \tau_y) \vecthree{x''}{y''}{1}\\
map_x(u,v)  \leftarrow x''' f_x + c_x  \\
map_y(u,v)  \leftarrow y''' f_y + c_y
\end{array}
\f]
where \f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6[, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$
are the distortion coefficients.

In case of a stereo camera, this function is called twice: once for each camera head, after
stereoRectify, which in its turn is called after #stereoCalibrate. But if the stereo camera
was not calibrated, it is still possible to compute the rectification transformations directly from
the fundamental matrix using #stereoRectifyUncalibrated. For each camera, the function computes
homography H as the rectification transformation in a pixel domain, not a rotation matrix R in 3D
space. R can be computed from H as
\f[\texttt{R} = \texttt{cameraMatrix} ^{-1} \cdot \texttt{H} \cdot \texttt{cameraMatrix}\f]
where cameraMatrix can be chosen arbitrarily.

@param cameraMatrix Input camera matrix \f$A=\vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$ .
@param distCoeffs Input vector of distortion coefficients
\f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6[, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$
of 4, 5, 8, 12 or 14 elements. If the vector is NULL/empty, the zero distortion coefficients are assumed.
@param R Optional rectification transformation in the object space (3x3 matrix). R1 or R2 ,
computed by #stereoRectify can be passed here. If the matrix is empty, the identity transformation
is assumed. In cvInitUndistortMap R assumed to be an identity matrix.
@param newCameraMatrix New camera matrix \f$A'=\vecthreethree{f_x'}{0}{c_x'}{0}{f_y'}{c_y'}{0}{0}{1}\f$.
@param size Undistorted image size.
@param m1type Type of the first output map that can be CV_32FC1, CV_32FC2 or CV_16SC2, see #convertMaps
@param map1 The first output map.
@param map2 The second output map.
 */
CV_EXPORTS_W
void initUndistortRectifyMap(InputArray cameraMatrix, InputArray distCoeffs,
                             InputArray R, InputArray newCameraMatrix,
                             Size size, int m1type, OutputArray map1, OutputArray map2);

//! initializes maps for #remap for wide-angle
CV_EXPORTS
float initWideAngleProjMap(InputArray cameraMatrix, InputArray distCoeffs,
                           Size imageSize, int destImageWidth,
                           int m1type, OutputArray map1, OutputArray map2,
                           enum UndistortTypes projType = PROJ_SPHERICAL_EQRECT, double alpha = 0);
static inline
float initWideAngleProjMap(InputArray cameraMatrix, InputArray distCoeffs,
                           Size imageSize, int destImageWidth,
                           int m1type, OutputArray map1, OutputArray map2,
                           int projType, double alpha = 0)
{
    return initWideAngleProjMap(cameraMatrix, distCoeffs, imageSize, destImageWidth,
                                m1type, map1, map2, (UndistortTypes)projType, alpha);
}

/** @brief Returns the default new camera matrix.

The function returns the camera matrix that is either an exact copy of the input cameraMatrix (when
centerPrinicipalPoint=false ), or the modified one (when centerPrincipalPoint=true).

In the latter case, the new camera matrix will be:

\f[\begin{bmatrix} f_x && 0 && ( \texttt{imgSize.width} -1)*0.5  \\ 0 && f_y && ( \texttt{imgSize.height} -1)*0.5  \\ 0 && 0 && 1 \end{bmatrix} ,\f]

where \f$f_x\f$ and \f$f_y\f$ are \f$(0,0)\f$ and \f$(1,1)\f$ elements of cameraMatrix, respectively.

By default, the undistortion functions in OpenCV (see #initUndistortRectifyMap, #undistort) do not
move the principal point. However, when you work with stereo, it is important to move the principal
points in both views to the same y-coordinate (which is required by most of stereo correspondence
algorithms), and may be to the same x-coordinate too. So, you can form the new camera matrix for
each view where the principal points are located at the center.

@param cameraMatrix Input camera matrix.
@param imgsize Camera view image size in pixels.
@param centerPrincipalPoint Location of the principal point in the new camera matrix. The
parameter indicates whether this location should be at the image center or not.
 */
CV_EXPORTS_W
Mat getDefaultNewCameraMatrix(InputArray cameraMatrix, Size imgsize = Size(),
                              bool centerPrincipalPoint = false);

/** @brief Computes the ideal point coordinates from the observed point coordinates.

The function is similar to #undistort and #initUndistortRectifyMap but it operates on a
sparse set of points instead of a raster image. Also the function performs a reverse transformation
to projectPoints. In case of a 3D object, it does not reconstruct its 3D coordinates, but for a
planar object, it does, up to a translation vector, if the proper R is specified.

For each observed point coordinate \f$(u, v)\f$ the function computes:
\f[
\begin{array}{l}
x^{"}  \leftarrow (u - c_x)/f_x  \\
y^{"}  \leftarrow (v - c_y)/f_y  \\
(x',y') = undistort(x^{"},y^{"}, \texttt{distCoeffs}) \\
{[X\,Y\,W]} ^T  \leftarrow R*[x' \, y' \, 1]^T  \\
x  \leftarrow X/W  \\
y  \leftarrow Y/W  \\
\text{only performed if P is specified:} \\
u'  \leftarrow x {f'}_x + {c'}_x  \\
v'  \leftarrow y {f'}_y + {c'}_y
\end{array}
\f]

where *undistort* is an approximate iterative algorithm that estimates the normalized original
point coordinates out of the normalized distorted point coordinates ("normalized" means that the
coordinates do not depend on the camera matrix).

The function can be used for both a stereo camera head or a monocular camera (when R is empty).
@param src Observed point coordinates, 2xN/Nx2 1-channel or 1xN/Nx1 2-channel (CV_32FC2 or CV_64FC2) (or
vector\<Point2f\> ).
@param dst Output ideal point coordinates (1xN/Nx1 2-channel or vector\<Point2f\> ) after undistortion and reverse perspective
transformation. If matrix P is identity or omitted, dst will contain normalized point coordinates.
@param cameraMatrix Camera matrix \f$\vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$ .
@param distCoeffs Input vector of distortion coefficients
\f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6[, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$
of 4, 5, 8, 12 or 14 elements. If the vector is NULL/empty, the zero distortion coefficients are assumed.
@param R Rectification transformation in the object space (3x3 matrix). R1 or R2 computed by
#stereoRectify can be passed here. If the matrix is empty, the identity transformation is used.
@param P New camera matrix (3x3) or new projection matrix (3x4) \f$\begin{bmatrix} {f'}_x & 0 & {c'}_x & t_x \\ 0 & {f'}_y & {c'}_y & t_y \\ 0 & 0 & 1 & t_z \end{bmatrix}\f$. P1 or P2 computed by
#stereoRectify can be passed here. If the matrix is empty, the identity new camera matrix is used.
 */
CV_EXPORTS_W
void undistortPoints(InputArray src, OutputArray dst,
                     InputArray cameraMatrix, InputArray distCoeffs,
                     InputArray R = noArray(), InputArray P = noArray());
/** @overload
    @note Default version of #undistortPoints does 5 iterations to compute undistorted points.
 */
CV_EXPORTS_AS(undistortPointsIter)
void undistortPoints(InputArray src, OutputArray dst,
                     InputArray cameraMatrix, InputArray distCoeffs,
                     InputArray R, InputArray P, TermCriteria criteria);

//! @} calib3d

/** @brief The methods in this namespace use a so-called fisheye camera model.
  @ingroup calib3d_fisheye
*/
namespace fisheye
{
//! @addtogroup calib3d_fisheye
//! @{

    enum{
        CALIB_USE_INTRINSIC_GUESS   = 1 << 0,
        CALIB_RECOMPUTE_EXTRINSIC   = 1 << 1,
        CALIB_CHECK_COND            = 1 << 2,
        CALIB_FIX_SKEW              = 1 << 3,
        CALIB_FIX_K1                = 1 << 4,
        CALIB_FIX_K2                = 1 << 5,
        CALIB_FIX_K3                = 1 << 6,
        CALIB_FIX_K4                = 1 << 7,
        CALIB_FIX_INTRINSIC         = 1 << 8,
        CALIB_FIX_PRINCIPAL_POINT   = 1 << 9
    };

    /** @brief Projects points using fisheye model

    @param objectPoints Array of object points, 1xN/Nx1 3-channel (or vector\<Point3f\> ), where N is
    the number of points in the view.
    @param imagePoints Output array of image points, 2xN/Nx2 1-channel or 1xN/Nx1 2-channel, or
    vector\<Point2f\>.
    @param affine
    @param K Camera matrix \f$K = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{_1}\f$.
    @param D Input vector of distortion coefficients \f$(k_1, k_2, k_3, k_4)\f$.
    @param alpha The skew coefficient.
    @param jacobian Optional output 2Nx15 jacobian matrix of derivatives of image points with respect
    to components of the focal lengths, coordinates of the principal point, distortion coefficients,
    rotation vector, translation vector, and the skew. In the old interface different components of
    the jacobian are returned via different output parameters.

    The function computes projections of 3D points to the image plane given intrinsic and extrinsic
    camera parameters. Optionally, the function computes Jacobians - matrices of partial derivatives of
    image points coordinates (as functions of all the input parameters) with respect to the particular
    parameters, intrinsic and/or extrinsic.
     */
    CV_EXPORTS void projectPoints(InputArray objectPoints, OutputArray imagePoints, const Affine3d& affine,
        InputArray K, InputArray D, double alpha = 0, OutputArray jacobian = noArray());

    /** @overload */
    CV_EXPORTS_W void projectPoints(InputArray objectPoints, OutputArray imagePoints, InputArray rvec, InputArray tvec,
        InputArray K, InputArray D, double alpha = 0, OutputArray jacobian = noArray());

    /** @brief Distorts 2D points using fisheye model.

    @param undistorted Array of object points, 1xN/Nx1 2-channel (or vector\<Point2f\> ), where N is
    the number of points in the view.
    @param K Camera matrix \f$K = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{_1}\f$.
    @param D Input vector of distortion coefficients \f$(k_1, k_2, k_3, k_4)\f$.
    @param alpha The skew coefficient.
    @param distorted Output array of image points, 1xN/Nx1 2-channel, or vector\<Point2f\> .

    Note that the function assumes the camera matrix of the undistorted points to be identity.
    This means if you want to transform back points undistorted with undistortPoints() you have to
    multiply them with \f$P^{-1}\f$.
     */
    CV_EXPORTS_W void distortPoints(InputArray undistorted, OutputArray distorted, InputArray K, InputArray D, double alpha = 0);

    /** @brief Undistorts 2D points using fisheye model

    @param distorted Array of object points, 1xN/Nx1 2-channel (or vector\<Point2f\> ), where N is the
    number of points in the view.
    @param K Camera matrix \f$K = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{_1}\f$.
    @param D Input vector of distortion coefficients \f$(k_1, k_2, k_3, k_4)\f$.
    @param R Rectification transformation in the object space: 3x3 1-channel, or vector: 3x1/1x3
    1-channel or 1x1 3-channel
    @param P New camera matrix (3x3) or new projection matrix (3x4)
    @param undistorted Output array of image points, 1xN/Nx1 2-channel, or vector\<Point2f\> .
     */
    CV_EXPORTS_W void undistortPoints(InputArray distorted, OutputArray undistorted,
        InputArray K, InputArray D, InputArray R = noArray(), InputArray P  = noArray());

    /** @brief Computes undistortion and rectification maps for image transform by cv::remap(). If D is empty zero
    distortion is used, if R or P is empty identity matrixes are used.

    @param K Camera matrix \f$K = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{_1}\f$.
    @param D Input vector of distortion coefficients \f$(k_1, k_2, k_3, k_4)\f$.
    @param R Rectification transformation in the object space: 3x3 1-channel, or vector: 3x1/1x3
    1-channel or 1x1 3-channel
    @param P New camera matrix (3x3) or new projection matrix (3x4)
    @param size Undistorted image size.
    @param m1type Type of the first output map that can be CV_32FC1 or CV_16SC2 . See convertMaps()
    for details.
    @param map1 The first output map.
    @param map2 The second output map.
     */
    CV_EXPORTS_W void initUndistortRectifyMap(InputArray K, InputArray D, InputArray R, InputArray P,
        const cv::Size& size, int m1type, OutputArray map1, OutputArray map2);

    /** @brief Transforms an image to compensate for fisheye lens distortion.

    @param distorted image with fisheye lens distortion.
    @param undistorted Output image with compensated fisheye lens distortion.
    @param K Camera matrix \f$K = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{_1}\f$.
    @param D Input vector of distortion coefficients \f$(k_1, k_2, k_3, k_4)\f$.
    @param Knew Camera matrix of the distorted image. By default, it is the identity matrix but you
    may additionally scale and shift the result by using a different matrix.
    @param new_size the new size

    The function transforms an image to compensate radial and tangential lens distortion.

    The function is simply a combination of fisheye::initUndistortRectifyMap (with unity R ) and remap
    (with bilinear interpolation). See the former function for details of the transformation being
    performed.

    See below the results of undistortImage.
       -   a\) result of undistort of perspective camera model (all possible coefficients (k_1, k_2, k_3,
            k_4, k_5, k_6) of distortion were optimized under calibration)
        -   b\) result of fisheye::undistortImage of fisheye camera model (all possible coefficients (k_1, k_2,
            k_3, k_4) of fisheye distortion were optimized under calibration)
        -   c\) original image was captured with fisheye lens

    Pictures a) and b) almost the same. But if we consider points of image located far from the center
    of image, we can notice that on image a) these points are distorted.

    ![image](pics/fisheye_undistorted.jpg)
     */
    CV_EXPORTS_W void undistortImage(InputArray distorted, OutputArray undistorted,
        InputArray K, InputArray D, InputArray Knew = cv::noArray(), const Size& new_size = Size());

    /** @brief Estimates new camera matrix for undistortion or rectification.

    @param K Camera matrix \f$K = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{_1}\f$.
    @param image_size Size of the image
    @param D Input vector of distortion coefficients \f$(k_1, k_2, k_3, k_4)\f$.
    @param R Rectification transformation in the object space: 3x3 1-channel, or vector: 3x1/1x3
    1-channel or 1x1 3-channel
    @param P New camera matrix (3x3) or new projection matrix (3x4)
    @param balance Sets the new focal length in range between the min focal length and the max focal
    length. Balance is in range of [0, 1].
    @param new_size the new size
    @param fov_scale Divisor for new focal length.
     */
    CV_EXPORTS_W void estimateNewCameraMatrixForUndistortRectify(InputArray K, InputArray D, const Size &image_size, InputArray R,
        OutputArray P, double balance = 0.0, const Size& new_size = Size(), double fov_scale = 1.0);

    /** @brief Performs camera calibaration

    @param objectPoints vector of vectors of calibration pattern points in the calibration pattern
    coordinate space.
    @param imagePoints vector of vectors of the projections of calibration pattern points.
    imagePoints.size() and objectPoints.size() and imagePoints[i].size() must be equal to
    objectPoints[i].size() for each i.
    @param image_size Size of the image used only to initialize the intrinsic camera matrix.
    @param K Output 3x3 floating-point camera matrix
    \f$A = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$ . If
    fisheye::CALIB_USE_INTRINSIC_GUESS/ is specified, some or all of fx, fy, cx, cy must be
    initialized before calling the function.
    @param D Output vector of distortion coefficients \f$(k_1, k_2, k_3, k_4)\f$.
    @param rvecs Output vector of rotation vectors (see Rodrigues ) estimated for each pattern view.
    That is, each k-th rotation vector together with the corresponding k-th translation vector (see
    the next output parameter description) brings the calibration pattern from the model coordinate
    space (in which object points are specified) to the world coordinate space, that is, a real
    position of the calibration pattern in the k-th pattern view (k=0.. *M* -1).
    @param tvecs Output vector of translation vectors estimated for each pattern view.
    @param flags Different flags that may be zero or a combination of the following values:
    -   **fisheye::CALIB_USE_INTRINSIC_GUESS** cameraMatrix contains valid initial values of
    fx, fy, cx, cy that are optimized further. Otherwise, (cx, cy) is initially set to the image
    center ( imageSize is used), and focal distances are computed in a least-squares fashion.
    -   **fisheye::CALIB_RECOMPUTE_EXTRINSIC** Extrinsic will be recomputed after each iteration
    of intrinsic optimization.
    -   **fisheye::CALIB_CHECK_COND** The functions will check validity of condition number.
    -   **fisheye::CALIB_FIX_SKEW** Skew coefficient (alpha) is set to zero and stay zero.
    -   **fisheye::CALIB_FIX_K1..fisheye::CALIB_FIX_K4** Selected distortion coefficients
    are set to zeros and stay zero.
    -   **fisheye::CALIB_FIX_PRINCIPAL_POINT** The principal point is not changed during the global
optimization. It stays at the center or at a different location specified when CALIB_USE_INTRINSIC_GUESS is set too.
    @param criteria Termination criteria for the iterative optimization algorithm.
     */
    CV_EXPORTS_W double calibrate(InputArrayOfArrays objectPoints, InputArrayOfArrays imagePoints, const Size& image_size,
        InputOutputArray K, InputOutputArray D, OutputArrayOfArrays rvecs, OutputArrayOfArrays tvecs, int flags = 0,
            TermCriteria criteria = TermCriteria(TermCriteria::COUNT + TermCriteria::EPS, 100, DBL_EPSILON));

    /** @brief Stereo rectification for fisheye camera model

    @param K1 First camera matrix.
    @param D1 First camera distortion parameters.
    @param K2 Second camera matrix.
    @param D2 Second camera distortion parameters.
    @param imageSize Size of the image used for stereo calibration.
    @param R Rotation matrix between the coordinate systems of the first and the second
    cameras.
    @param tvec Translation vector between coordinate systems of the cameras.
    @param R1 Output 3x3 rectification transform (rotation matrix) for the first camera.
    @param R2 Output 3x3 rectification transform (rotation matrix) for the second camera.
    @param P1 Output 3x4 projection matrix in the new (rectified) coordinate systems for the first
    camera.
    @param P2 Output 3x4 projection matrix in the new (rectified) coordinate systems for the second
    camera.
    @param Q Output \f$4 \times 4\f$ disparity-to-depth mapping matrix (see reprojectImageTo3D ).
    @param flags Operation flags that may be zero or CALIB_ZERO_DISPARITY . If the flag is set,
    the function makes the principal points of each camera have the same pixel coordinates in the
    rectified views. And if the flag is not set, the function may still shift the images in the
    horizontal or vertical direction (depending on the orientation of epipolar lines) to maximize the
    useful image area.
    @param newImageSize New image resolution after rectification. The same size should be passed to
    initUndistortRectifyMap (see the stereo_calib.cpp sample in OpenCV samples directory). When (0,0)
    is passed (default), it is set to the original imageSize . Setting it to larger value can help you
    preserve details in the original image, especially when there is a big radial distortion.
    @param balance Sets the new focal length in range between the min focal length and the max focal
    length. Balance is in range of [0, 1].
    @param fov_scale Divisor for new focal length.
     */
    CV_EXPORTS_W void stereoRectify(InputArray K1, InputArray D1, InputArray K2, InputArray D2, const Size &imageSize, InputArray R, InputArray tvec,
        OutputArray R1, OutputArray R2, OutputArray P1, OutputArray P2, OutputArray Q, int flags, const Size &newImageSize = Size(),
        double balance = 0.0, double fov_scale = 1.0);

    /** @brief Performs stereo calibration

    @param objectPoints Vector of vectors of the calibration pattern points.
    @param imagePoints1 Vector of vectors of the projections of the calibration pattern points,
    observed by the first camera.
    @param imagePoints2 Vector of vectors of the projections of the calibration pattern points,
    observed by the second camera.
    @param K1 Input/output first camera matrix:
    \f$\vecthreethree{f_x^{(j)}}{0}{c_x^{(j)}}{0}{f_y^{(j)}}{c_y^{(j)}}{0}{0}{1}\f$ , \f$j = 0,\, 1\f$ . If
    any of fisheye::CALIB_USE_INTRINSIC_GUESS , fisheye::CALIB_FIX_INTRINSIC are specified,
    some or all of the matrix components must be initialized.
    @param D1 Input/output vector of distortion coefficients \f$(k_1, k_2, k_3, k_4)\f$ of 4 elements.
    @param K2 Input/output second camera matrix. The parameter is similar to K1 .
    @param D2 Input/output lens distortion coefficients for the second camera. The parameter is
    similar to D1 .
    @param imageSize Size of the image used only to initialize intrinsic camera matrix.
    @param R Output rotation matrix between the 1st and the 2nd camera coordinate systems.
    @param T Output translation vector between the coordinate systems of the cameras.
    @param flags Different flags that may be zero or a combination of the following values:
    -   **fisheye::CALIB_FIX_INTRINSIC** Fix K1, K2? and D1, D2? so that only R, T matrices
    are estimated.
    -   **fisheye::CALIB_USE_INTRINSIC_GUESS** K1, K2 contains valid initial values of
    fx, fy, cx, cy that are optimized further. Otherwise, (cx, cy) is initially set to the image
    center (imageSize is used), and focal distances are computed in a least-squares fashion.
    -   **fisheye::CALIB_RECOMPUTE_EXTRINSIC** Extrinsic will be recomputed after each iteration
    of intrinsic optimization.
    -   **fisheye::CALIB_CHECK_COND** The functions will check validity of condition number.
    -   **fisheye::CALIB_FIX_SKEW** Skew coefficient (alpha) is set to zero and stay zero.
    -   **fisheye::CALIB_FIX_K1..4** Selected distortion coefficients are set to zeros and stay
    zero.
    @param criteria Termination criteria for the iterative optimization algorithm.
     */
    CV_EXPORTS_W double stereoCalibrate(InputArrayOfArrays objectPoints, InputArrayOfArrays imagePoints1, InputArrayOfArrays imagePoints2,
                                  InputOutputArray K1, InputOutputArray D1, InputOutputArray K2, InputOutputArray D2, Size imageSize,
                                  OutputArray R, OutputArray T, int flags = fisheye::CALIB_FIX_INTRINSIC,
                                  TermCriteria criteria = TermCriteria(TermCriteria::COUNT + TermCriteria::EPS, 100, DBL_EPSILON));

//! @} calib3d_fisheye
} // end namespace fisheye

} //end namespace cv

#if 0 //def __cplusplus
//////////////////////////////////////////////////////////////////////////////////////////
class CV_EXPORTS CvLevMarq
{
public:
    CvLevMarq();
    CvLevMarq( int nparams, int nerrs, CvTermCriteria criteria=
              cvTermCriteria(CV_TERMCRIT_EPS+CV_TERMCRIT_ITER,30,DBL_EPSILON),
              bool completeSymmFlag=false );
    ~CvLevMarq();
    void init( int nparams, int nerrs, CvTermCriteria criteria=
              cvTermCriteria(CV_TERMCRIT_EPS+CV_TERMCRIT_ITER,30,DBL_EPSILON),
              bool completeSymmFlag=false );
    bool update( const CvMat*& param, CvMat*& J, CvMat*& err );
    bool updateAlt( const CvMat*& param, CvMat*& JtJ, CvMat*& JtErr, double*& errNorm );

    void clear();
    void step();
    enum { DONE=0, STARTED=1, CALC_J=2, CHECK_ERR=3 };

    cv::Ptr<CvMat> mask;
    cv::Ptr<CvMat> prevParam;
    cv::Ptr<CvMat> param;
    cv::Ptr<CvMat> J;
    cv::Ptr<CvMat> err;
    cv::Ptr<CvMat> JtJ;
    cv::Ptr<CvMat> JtJN;
    cv::Ptr<CvMat> JtErr;
    cv::Ptr<CvMat> JtJV;
    cv::Ptr<CvMat> JtJW;
    double prevErrNorm, errNorm;
    int lambdaLg10;
    CvTermCriteria criteria;
    int state;
    int iters;
    bool completeSymmFlag;
    int solveMethod;
};
#endif

#endif