Video.java 59.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041
//
// This file is auto-generated. Please don't modify it!
//
package org.opencv.video;

import java.util.ArrayList;
import java.util.List;
import org.opencv.core.Mat;
import org.opencv.core.MatOfByte;
import org.opencv.core.MatOfFloat;
import org.opencv.core.MatOfPoint2f;
import org.opencv.core.Rect;
import org.opencv.core.RotatedRect;
import org.opencv.core.Size;
import org.opencv.core.TermCriteria;
import org.opencv.utils.Converters;
import org.opencv.video.BackgroundSubtractorKNN;
import org.opencv.video.BackgroundSubtractorMOG2;

// C++: class Video

public class Video {

    private static final int
            CV_LKFLOW_INITIAL_GUESSES = 4,
            CV_LKFLOW_GET_MIN_EIGENVALS = 8;


    // C++: enum <unnamed>
    public static final int
            OPTFLOW_USE_INITIAL_FLOW = 4,
            OPTFLOW_LK_GET_MIN_EIGENVALS = 8,
            OPTFLOW_FARNEBACK_GAUSSIAN = 256,
            MOTION_TRANSLATION = 0,
            MOTION_EUCLIDEAN = 1,
            MOTION_AFFINE = 2,
            MOTION_HOMOGRAPHY = 3;


    // C++: enum MODE (cv.detail.TrackerSamplerCSC.MODE)
    public static final int
            TrackerSamplerCSC_MODE_INIT_POS = 1,
            TrackerSamplerCSC_MODE_INIT_NEG = 2,
            TrackerSamplerCSC_MODE_TRACK_POS = 3,
            TrackerSamplerCSC_MODE_TRACK_NEG = 4,
            TrackerSamplerCSC_MODE_DETECT = 5;


    //
    // C++:  Ptr_BackgroundSubtractorMOG2 cv::createBackgroundSubtractorMOG2(int history = 500, double varThreshold = 16, bool detectShadows = true)
    //

    /**
     * Creates MOG2 Background Subtractor
     *
     * @param history Length of the history.
     * @param varThreshold Threshold on the squared Mahalanobis distance between the pixel and the model
     * to decide whether a pixel is well described by the background model. This parameter does not
     * affect the background update.
     * @param detectShadows If true, the algorithm will detect shadows and mark them. It decreases the
     * speed a bit, so if you do not need this feature, set the parameter to false.
     * @return automatically generated
     */
    public static BackgroundSubtractorMOG2 createBackgroundSubtractorMOG2(int history, double varThreshold, boolean detectShadows) {
        return BackgroundSubtractorMOG2.__fromPtr__(createBackgroundSubtractorMOG2_0(history, varThreshold, detectShadows));
    }

    /**
     * Creates MOG2 Background Subtractor
     *
     * @param history Length of the history.
     * @param varThreshold Threshold on the squared Mahalanobis distance between the pixel and the model
     * to decide whether a pixel is well described by the background model. This parameter does not
     * affect the background update.
     * speed a bit, so if you do not need this feature, set the parameter to false.
     * @return automatically generated
     */
    public static BackgroundSubtractorMOG2 createBackgroundSubtractorMOG2(int history, double varThreshold) {
        return BackgroundSubtractorMOG2.__fromPtr__(createBackgroundSubtractorMOG2_1(history, varThreshold));
    }

    /**
     * Creates MOG2 Background Subtractor
     *
     * @param history Length of the history.
     * to decide whether a pixel is well described by the background model. This parameter does not
     * affect the background update.
     * speed a bit, so if you do not need this feature, set the parameter to false.
     * @return automatically generated
     */
    public static BackgroundSubtractorMOG2 createBackgroundSubtractorMOG2(int history) {
        return BackgroundSubtractorMOG2.__fromPtr__(createBackgroundSubtractorMOG2_2(history));
    }

    /**
     * Creates MOG2 Background Subtractor
     *
     * to decide whether a pixel is well described by the background model. This parameter does not
     * affect the background update.
     * speed a bit, so if you do not need this feature, set the parameter to false.
     * @return automatically generated
     */
    public static BackgroundSubtractorMOG2 createBackgroundSubtractorMOG2() {
        return BackgroundSubtractorMOG2.__fromPtr__(createBackgroundSubtractorMOG2_3());
    }


    //
    // C++:  Ptr_BackgroundSubtractorKNN cv::createBackgroundSubtractorKNN(int history = 500, double dist2Threshold = 400.0, bool detectShadows = true)
    //

    /**
     * Creates KNN Background Subtractor
     *
     * @param history Length of the history.
     * @param dist2Threshold Threshold on the squared distance between the pixel and the sample to decide
     * whether a pixel is close to that sample. This parameter does not affect the background update.
     * @param detectShadows If true, the algorithm will detect shadows and mark them. It decreases the
     * speed a bit, so if you do not need this feature, set the parameter to false.
     * @return automatically generated
     */
    public static BackgroundSubtractorKNN createBackgroundSubtractorKNN(int history, double dist2Threshold, boolean detectShadows) {
        return BackgroundSubtractorKNN.__fromPtr__(createBackgroundSubtractorKNN_0(history, dist2Threshold, detectShadows));
    }

    /**
     * Creates KNN Background Subtractor
     *
     * @param history Length of the history.
     * @param dist2Threshold Threshold on the squared distance between the pixel and the sample to decide
     * whether a pixel is close to that sample. This parameter does not affect the background update.
     * speed a bit, so if you do not need this feature, set the parameter to false.
     * @return automatically generated
     */
    public static BackgroundSubtractorKNN createBackgroundSubtractorKNN(int history, double dist2Threshold) {
        return BackgroundSubtractorKNN.__fromPtr__(createBackgroundSubtractorKNN_1(history, dist2Threshold));
    }

    /**
     * Creates KNN Background Subtractor
     *
     * @param history Length of the history.
     * whether a pixel is close to that sample. This parameter does not affect the background update.
     * speed a bit, so if you do not need this feature, set the parameter to false.
     * @return automatically generated
     */
    public static BackgroundSubtractorKNN createBackgroundSubtractorKNN(int history) {
        return BackgroundSubtractorKNN.__fromPtr__(createBackgroundSubtractorKNN_2(history));
    }

    /**
     * Creates KNN Background Subtractor
     *
     * whether a pixel is close to that sample. This parameter does not affect the background update.
     * speed a bit, so if you do not need this feature, set the parameter to false.
     * @return automatically generated
     */
    public static BackgroundSubtractorKNN createBackgroundSubtractorKNN() {
        return BackgroundSubtractorKNN.__fromPtr__(createBackgroundSubtractorKNN_3());
    }


    //
    // C++:  RotatedRect cv::CamShift(Mat probImage, Rect& window, TermCriteria criteria)
    //

    /**
     * Finds an object center, size, and orientation.
     *
     * @param probImage Back projection of the object histogram. See calcBackProject.
     * @param window Initial search window.
     * @param criteria Stop criteria for the underlying meanShift.
     * returns
     * (in old interfaces) Number of iterations CAMSHIFT took to converge
     * The function implements the CAMSHIFT object tracking algorithm CITE: Bradski98 . First, it finds an
     * object center using meanShift and then adjusts the window size and finds the optimal rotation. The
     * function returns the rotated rectangle structure that includes the object position, size, and
     * orientation. The next position of the search window can be obtained with RotatedRect::boundingRect()
     *
     * See the OpenCV sample camshiftdemo.c that tracks colored objects.
     *
     * <b>Note:</b>
     * <ul>
     *   <li>
     *    (Python) A sample explaining the camshift tracking algorithm can be found at
     *     opencv_source_code/samples/python/camshift.py
     *   </li>
     * </ul>
     * @return automatically generated
     */
    public static RotatedRect CamShift(Mat probImage, Rect window, TermCriteria criteria) {
        double[] window_out = new double[4];
        RotatedRect retVal = new RotatedRect(CamShift_0(probImage.nativeObj, window.x, window.y, window.width, window.height, window_out, criteria.type, criteria.maxCount, criteria.epsilon));
        if(window!=null){ window.x = (int)window_out[0]; window.y = (int)window_out[1]; window.width = (int)window_out[2]; window.height = (int)window_out[3]; } 
        return retVal;
    }


    //
    // C++:  int cv::meanShift(Mat probImage, Rect& window, TermCriteria criteria)
    //

    /**
     * Finds an object on a back projection image.
     *
     * @param probImage Back projection of the object histogram. See calcBackProject for details.
     * @param window Initial search window.
     * @param criteria Stop criteria for the iterative search algorithm.
     * returns
     * :   Number of iterations CAMSHIFT took to converge.
     * The function implements the iterative object search algorithm. It takes the input back projection of
     * an object and the initial position. The mass center in window of the back projection image is
     * computed and the search window center shifts to the mass center. The procedure is repeated until the
     * specified number of iterations criteria.maxCount is done or until the window center shifts by less
     * than criteria.epsilon. The algorithm is used inside CamShift and, unlike CamShift , the search
     * window size or orientation do not change during the search. You can simply pass the output of
     * calcBackProject to this function. But better results can be obtained if you pre-filter the back
     * projection and remove the noise. For example, you can do this by retrieving connected components
     * with findContours , throwing away contours with small area ( contourArea ), and rendering the
     * remaining contours with drawContours.
     * @return automatically generated
     */
    public static int meanShift(Mat probImage, Rect window, TermCriteria criteria) {
        double[] window_out = new double[4];
        int retVal = meanShift_0(probImage.nativeObj, window.x, window.y, window.width, window.height, window_out, criteria.type, criteria.maxCount, criteria.epsilon);
        if(window!=null){ window.x = (int)window_out[0]; window.y = (int)window_out[1]; window.width = (int)window_out[2]; window.height = (int)window_out[3]; } 
        return retVal;
    }


    //
    // C++:  int cv::buildOpticalFlowPyramid(Mat img, vector_Mat& pyramid, Size winSize, int maxLevel, bool withDerivatives = true, int pyrBorder = BORDER_REFLECT_101, int derivBorder = BORDER_CONSTANT, bool tryReuseInputImage = true)
    //

    /**
     * Constructs the image pyramid which can be passed to calcOpticalFlowPyrLK.
     *
     * @param img 8-bit input image.
     * @param pyramid output pyramid.
     * @param winSize window size of optical flow algorithm. Must be not less than winSize argument of
     * calcOpticalFlowPyrLK. It is needed to calculate required padding for pyramid levels.
     * @param maxLevel 0-based maximal pyramid level number.
     * @param withDerivatives set to precompute gradients for the every pyramid level. If pyramid is
     * constructed without the gradients then calcOpticalFlowPyrLK will calculate them internally.
     * @param pyrBorder the border mode for pyramid layers.
     * @param derivBorder the border mode for gradients.
     * @param tryReuseInputImage put ROI of input image into the pyramid if possible. You can pass false
     * to force data copying.
     * @return number of levels in constructed pyramid. Can be less than maxLevel.
     */
    public static int buildOpticalFlowPyramid(Mat img, List<Mat> pyramid, Size winSize, int maxLevel, boolean withDerivatives, int pyrBorder, int derivBorder, boolean tryReuseInputImage) {
        Mat pyramid_mat = new Mat();
        int retVal = buildOpticalFlowPyramid_0(img.nativeObj, pyramid_mat.nativeObj, winSize.width, winSize.height, maxLevel, withDerivatives, pyrBorder, derivBorder, tryReuseInputImage);
        Converters.Mat_to_vector_Mat(pyramid_mat, pyramid);
        pyramid_mat.release();
        return retVal;
    }

    /**
     * Constructs the image pyramid which can be passed to calcOpticalFlowPyrLK.
     *
     * @param img 8-bit input image.
     * @param pyramid output pyramid.
     * @param winSize window size of optical flow algorithm. Must be not less than winSize argument of
     * calcOpticalFlowPyrLK. It is needed to calculate required padding for pyramid levels.
     * @param maxLevel 0-based maximal pyramid level number.
     * @param withDerivatives set to precompute gradients for the every pyramid level. If pyramid is
     * constructed without the gradients then calcOpticalFlowPyrLK will calculate them internally.
     * @param pyrBorder the border mode for pyramid layers.
     * @param derivBorder the border mode for gradients.
     * to force data copying.
     * @return number of levels in constructed pyramid. Can be less than maxLevel.
     */
    public static int buildOpticalFlowPyramid(Mat img, List<Mat> pyramid, Size winSize, int maxLevel, boolean withDerivatives, int pyrBorder, int derivBorder) {
        Mat pyramid_mat = new Mat();
        int retVal = buildOpticalFlowPyramid_1(img.nativeObj, pyramid_mat.nativeObj, winSize.width, winSize.height, maxLevel, withDerivatives, pyrBorder, derivBorder);
        Converters.Mat_to_vector_Mat(pyramid_mat, pyramid);
        pyramid_mat.release();
        return retVal;
    }

    /**
     * Constructs the image pyramid which can be passed to calcOpticalFlowPyrLK.
     *
     * @param img 8-bit input image.
     * @param pyramid output pyramid.
     * @param winSize window size of optical flow algorithm. Must be not less than winSize argument of
     * calcOpticalFlowPyrLK. It is needed to calculate required padding for pyramid levels.
     * @param maxLevel 0-based maximal pyramid level number.
     * @param withDerivatives set to precompute gradients for the every pyramid level. If pyramid is
     * constructed without the gradients then calcOpticalFlowPyrLK will calculate them internally.
     * @param pyrBorder the border mode for pyramid layers.
     * to force data copying.
     * @return number of levels in constructed pyramid. Can be less than maxLevel.
     */
    public static int buildOpticalFlowPyramid(Mat img, List<Mat> pyramid, Size winSize, int maxLevel, boolean withDerivatives, int pyrBorder) {
        Mat pyramid_mat = new Mat();
        int retVal = buildOpticalFlowPyramid_2(img.nativeObj, pyramid_mat.nativeObj, winSize.width, winSize.height, maxLevel, withDerivatives, pyrBorder);
        Converters.Mat_to_vector_Mat(pyramid_mat, pyramid);
        pyramid_mat.release();
        return retVal;
    }

    /**
     * Constructs the image pyramid which can be passed to calcOpticalFlowPyrLK.
     *
     * @param img 8-bit input image.
     * @param pyramid output pyramid.
     * @param winSize window size of optical flow algorithm. Must be not less than winSize argument of
     * calcOpticalFlowPyrLK. It is needed to calculate required padding for pyramid levels.
     * @param maxLevel 0-based maximal pyramid level number.
     * @param withDerivatives set to precompute gradients for the every pyramid level. If pyramid is
     * constructed without the gradients then calcOpticalFlowPyrLK will calculate them internally.
     * to force data copying.
     * @return number of levels in constructed pyramid. Can be less than maxLevel.
     */
    public static int buildOpticalFlowPyramid(Mat img, List<Mat> pyramid, Size winSize, int maxLevel, boolean withDerivatives) {
        Mat pyramid_mat = new Mat();
        int retVal = buildOpticalFlowPyramid_3(img.nativeObj, pyramid_mat.nativeObj, winSize.width, winSize.height, maxLevel, withDerivatives);
        Converters.Mat_to_vector_Mat(pyramid_mat, pyramid);
        pyramid_mat.release();
        return retVal;
    }

    /**
     * Constructs the image pyramid which can be passed to calcOpticalFlowPyrLK.
     *
     * @param img 8-bit input image.
     * @param pyramid output pyramid.
     * @param winSize window size of optical flow algorithm. Must be not less than winSize argument of
     * calcOpticalFlowPyrLK. It is needed to calculate required padding for pyramid levels.
     * @param maxLevel 0-based maximal pyramid level number.
     * constructed without the gradients then calcOpticalFlowPyrLK will calculate them internally.
     * to force data copying.
     * @return number of levels in constructed pyramid. Can be less than maxLevel.
     */
    public static int buildOpticalFlowPyramid(Mat img, List<Mat> pyramid, Size winSize, int maxLevel) {
        Mat pyramid_mat = new Mat();
        int retVal = buildOpticalFlowPyramid_4(img.nativeObj, pyramid_mat.nativeObj, winSize.width, winSize.height, maxLevel);
        Converters.Mat_to_vector_Mat(pyramid_mat, pyramid);
        pyramid_mat.release();
        return retVal;
    }


    //
    // C++:  void cv::calcOpticalFlowPyrLK(Mat prevImg, Mat nextImg, vector_Point2f prevPts, vector_Point2f& nextPts, vector_uchar& status, vector_float& err, Size winSize = Size(21,21), int maxLevel = 3, TermCriteria criteria = TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, 30, 0.01), int flags = 0, double minEigThreshold = 1e-4)
    //

    /**
     * Calculates an optical flow for a sparse feature set using the iterative Lucas-Kanade method with
     * pyramids.
     *
     * @param prevImg first 8-bit input image or pyramid constructed by buildOpticalFlowPyramid.
     * @param nextImg second input image or pyramid of the same size and the same type as prevImg.
     * @param prevPts vector of 2D points for which the flow needs to be found; point coordinates must be
     * single-precision floating-point numbers.
     * @param nextPts output vector of 2D points (with single-precision floating-point coordinates)
     * containing the calculated new positions of input features in the second image; when
     * OPTFLOW_USE_INITIAL_FLOW flag is passed, the vector must have the same size as in the input.
     * @param status output status vector (of unsigned chars); each element of the vector is set to 1 if
     * the flow for the corresponding features has been found, otherwise, it is set to 0.
     * @param err output vector of errors; each element of the vector is set to an error for the
     * corresponding feature, type of the error measure can be set in flags parameter; if the flow wasn't
     * found then the error is not defined (use the status parameter to find such cases).
     * @param winSize size of the search window at each pyramid level.
     * @param maxLevel 0-based maximal pyramid level number; if set to 0, pyramids are not used (single
     * level), if set to 1, two levels are used, and so on; if pyramids are passed to input then
     * algorithm will use as many levels as pyramids have but no more than maxLevel.
     * @param criteria parameter, specifying the termination criteria of the iterative search algorithm
     * (after the specified maximum number of iterations criteria.maxCount or when the search window
     * moves by less than criteria.epsilon.
     * @param flags operation flags:
     * <ul>
     *   <li>
     *     <b>OPTFLOW_USE_INITIAL_FLOW</b> uses initial estimations, stored in nextPts; if the flag is
     *      not set, then prevPts is copied to nextPts and is considered the initial estimate.
     *   </li>
     *   <li>
     *     <b>OPTFLOW_LK_GET_MIN_EIGENVALS</b> use minimum eigen values as an error measure (see
     *      minEigThreshold description); if the flag is not set, then L1 distance between patches
     *      around the original and a moved point, divided by number of pixels in a window, is used as a
     *      error measure.
     *   </li>
     * </ul>
     * @param minEigThreshold the algorithm calculates the minimum eigen value of a 2x2 normal matrix of
     * optical flow equations (this matrix is called a spatial gradient matrix in CITE: Bouguet00), divided
     * by number of pixels in a window; if this value is less than minEigThreshold, then a corresponding
     * feature is filtered out and its flow is not processed, so it allows to remove bad points and get a
     * performance boost.
     *
     * The function implements a sparse iterative version of the Lucas-Kanade optical flow in pyramids. See
     * CITE: Bouguet00 . The function is parallelized with the TBB library.
     *
     * <b>Note:</b> Some examples:
     *
     * <ul>
     *   <li>
     *    An example using the Lucas-Kanade optical flow algorithm can be found at
     *     opencv_source_code/samples/cpp/lkdemo.cpp
     *   </li>
     *   <li>
     *    (Python) An example using the Lucas-Kanade optical flow algorithm can be found at
     *     opencv_source_code/samples/python/lk_track.py
     *   </li>
     *   <li>
     *    (Python) An example using the Lucas-Kanade tracker for homography matching can be found at
     *     opencv_source_code/samples/python/lk_homography.py
     *   </li>
     * </ul>
     */
    public static void calcOpticalFlowPyrLK(Mat prevImg, Mat nextImg, MatOfPoint2f prevPts, MatOfPoint2f nextPts, MatOfByte status, MatOfFloat err, Size winSize, int maxLevel, TermCriteria criteria, int flags, double minEigThreshold) {
        Mat prevPts_mat = prevPts;
        Mat nextPts_mat = nextPts;
        Mat status_mat = status;
        Mat err_mat = err;
        calcOpticalFlowPyrLK_0(prevImg.nativeObj, nextImg.nativeObj, prevPts_mat.nativeObj, nextPts_mat.nativeObj, status_mat.nativeObj, err_mat.nativeObj, winSize.width, winSize.height, maxLevel, criteria.type, criteria.maxCount, criteria.epsilon, flags, minEigThreshold);
    }

    /**
     * Calculates an optical flow for a sparse feature set using the iterative Lucas-Kanade method with
     * pyramids.
     *
     * @param prevImg first 8-bit input image or pyramid constructed by buildOpticalFlowPyramid.
     * @param nextImg second input image or pyramid of the same size and the same type as prevImg.
     * @param prevPts vector of 2D points for which the flow needs to be found; point coordinates must be
     * single-precision floating-point numbers.
     * @param nextPts output vector of 2D points (with single-precision floating-point coordinates)
     * containing the calculated new positions of input features in the second image; when
     * OPTFLOW_USE_INITIAL_FLOW flag is passed, the vector must have the same size as in the input.
     * @param status output status vector (of unsigned chars); each element of the vector is set to 1 if
     * the flow for the corresponding features has been found, otherwise, it is set to 0.
     * @param err output vector of errors; each element of the vector is set to an error for the
     * corresponding feature, type of the error measure can be set in flags parameter; if the flow wasn't
     * found then the error is not defined (use the status parameter to find such cases).
     * @param winSize size of the search window at each pyramid level.
     * @param maxLevel 0-based maximal pyramid level number; if set to 0, pyramids are not used (single
     * level), if set to 1, two levels are used, and so on; if pyramids are passed to input then
     * algorithm will use as many levels as pyramids have but no more than maxLevel.
     * @param criteria parameter, specifying the termination criteria of the iterative search algorithm
     * (after the specified maximum number of iterations criteria.maxCount or when the search window
     * moves by less than criteria.epsilon.
     * @param flags operation flags:
     * <ul>
     *   <li>
     *     <b>OPTFLOW_USE_INITIAL_FLOW</b> uses initial estimations, stored in nextPts; if the flag is
     *      not set, then prevPts is copied to nextPts and is considered the initial estimate.
     *   </li>
     *   <li>
     *     <b>OPTFLOW_LK_GET_MIN_EIGENVALS</b> use minimum eigen values as an error measure (see
     *      minEigThreshold description); if the flag is not set, then L1 distance between patches
     *      around the original and a moved point, divided by number of pixels in a window, is used as a
     *      error measure.
     *   </li>
     * </ul>
     * optical flow equations (this matrix is called a spatial gradient matrix in CITE: Bouguet00), divided
     * by number of pixels in a window; if this value is less than minEigThreshold, then a corresponding
     * feature is filtered out and its flow is not processed, so it allows to remove bad points and get a
     * performance boost.
     *
     * The function implements a sparse iterative version of the Lucas-Kanade optical flow in pyramids. See
     * CITE: Bouguet00 . The function is parallelized with the TBB library.
     *
     * <b>Note:</b> Some examples:
     *
     * <ul>
     *   <li>
     *    An example using the Lucas-Kanade optical flow algorithm can be found at
     *     opencv_source_code/samples/cpp/lkdemo.cpp
     *   </li>
     *   <li>
     *    (Python) An example using the Lucas-Kanade optical flow algorithm can be found at
     *     opencv_source_code/samples/python/lk_track.py
     *   </li>
     *   <li>
     *    (Python) An example using the Lucas-Kanade tracker for homography matching can be found at
     *     opencv_source_code/samples/python/lk_homography.py
     *   </li>
     * </ul>
     */
    public static void calcOpticalFlowPyrLK(Mat prevImg, Mat nextImg, MatOfPoint2f prevPts, MatOfPoint2f nextPts, MatOfByte status, MatOfFloat err, Size winSize, int maxLevel, TermCriteria criteria, int flags) {
        Mat prevPts_mat = prevPts;
        Mat nextPts_mat = nextPts;
        Mat status_mat = status;
        Mat err_mat = err;
        calcOpticalFlowPyrLK_1(prevImg.nativeObj, nextImg.nativeObj, prevPts_mat.nativeObj, nextPts_mat.nativeObj, status_mat.nativeObj, err_mat.nativeObj, winSize.width, winSize.height, maxLevel, criteria.type, criteria.maxCount, criteria.epsilon, flags);
    }

    /**
     * Calculates an optical flow for a sparse feature set using the iterative Lucas-Kanade method with
     * pyramids.
     *
     * @param prevImg first 8-bit input image or pyramid constructed by buildOpticalFlowPyramid.
     * @param nextImg second input image or pyramid of the same size and the same type as prevImg.
     * @param prevPts vector of 2D points for which the flow needs to be found; point coordinates must be
     * single-precision floating-point numbers.
     * @param nextPts output vector of 2D points (with single-precision floating-point coordinates)
     * containing the calculated new positions of input features in the second image; when
     * OPTFLOW_USE_INITIAL_FLOW flag is passed, the vector must have the same size as in the input.
     * @param status output status vector (of unsigned chars); each element of the vector is set to 1 if
     * the flow for the corresponding features has been found, otherwise, it is set to 0.
     * @param err output vector of errors; each element of the vector is set to an error for the
     * corresponding feature, type of the error measure can be set in flags parameter; if the flow wasn't
     * found then the error is not defined (use the status parameter to find such cases).
     * @param winSize size of the search window at each pyramid level.
     * @param maxLevel 0-based maximal pyramid level number; if set to 0, pyramids are not used (single
     * level), if set to 1, two levels are used, and so on; if pyramids are passed to input then
     * algorithm will use as many levels as pyramids have but no more than maxLevel.
     * @param criteria parameter, specifying the termination criteria of the iterative search algorithm
     * (after the specified maximum number of iterations criteria.maxCount or when the search window
     * moves by less than criteria.epsilon.
     * <ul>
     *   <li>
     *     <b>OPTFLOW_USE_INITIAL_FLOW</b> uses initial estimations, stored in nextPts; if the flag is
     *      not set, then prevPts is copied to nextPts and is considered the initial estimate.
     *   </li>
     *   <li>
     *     <b>OPTFLOW_LK_GET_MIN_EIGENVALS</b> use minimum eigen values as an error measure (see
     *      minEigThreshold description); if the flag is not set, then L1 distance between patches
     *      around the original and a moved point, divided by number of pixels in a window, is used as a
     *      error measure.
     *   </li>
     * </ul>
     * optical flow equations (this matrix is called a spatial gradient matrix in CITE: Bouguet00), divided
     * by number of pixels in a window; if this value is less than minEigThreshold, then a corresponding
     * feature is filtered out and its flow is not processed, so it allows to remove bad points and get a
     * performance boost.
     *
     * The function implements a sparse iterative version of the Lucas-Kanade optical flow in pyramids. See
     * CITE: Bouguet00 . The function is parallelized with the TBB library.
     *
     * <b>Note:</b> Some examples:
     *
     * <ul>
     *   <li>
     *    An example using the Lucas-Kanade optical flow algorithm can be found at
     *     opencv_source_code/samples/cpp/lkdemo.cpp
     *   </li>
     *   <li>
     *    (Python) An example using the Lucas-Kanade optical flow algorithm can be found at
     *     opencv_source_code/samples/python/lk_track.py
     *   </li>
     *   <li>
     *    (Python) An example using the Lucas-Kanade tracker for homography matching can be found at
     *     opencv_source_code/samples/python/lk_homography.py
     *   </li>
     * </ul>
     */
    public static void calcOpticalFlowPyrLK(Mat prevImg, Mat nextImg, MatOfPoint2f prevPts, MatOfPoint2f nextPts, MatOfByte status, MatOfFloat err, Size winSize, int maxLevel, TermCriteria criteria) {
        Mat prevPts_mat = prevPts;
        Mat nextPts_mat = nextPts;
        Mat status_mat = status;
        Mat err_mat = err;
        calcOpticalFlowPyrLK_2(prevImg.nativeObj, nextImg.nativeObj, prevPts_mat.nativeObj, nextPts_mat.nativeObj, status_mat.nativeObj, err_mat.nativeObj, winSize.width, winSize.height, maxLevel, criteria.type, criteria.maxCount, criteria.epsilon);
    }

    /**
     * Calculates an optical flow for a sparse feature set using the iterative Lucas-Kanade method with
     * pyramids.
     *
     * @param prevImg first 8-bit input image or pyramid constructed by buildOpticalFlowPyramid.
     * @param nextImg second input image or pyramid of the same size and the same type as prevImg.
     * @param prevPts vector of 2D points for which the flow needs to be found; point coordinates must be
     * single-precision floating-point numbers.
     * @param nextPts output vector of 2D points (with single-precision floating-point coordinates)
     * containing the calculated new positions of input features in the second image; when
     * OPTFLOW_USE_INITIAL_FLOW flag is passed, the vector must have the same size as in the input.
     * @param status output status vector (of unsigned chars); each element of the vector is set to 1 if
     * the flow for the corresponding features has been found, otherwise, it is set to 0.
     * @param err output vector of errors; each element of the vector is set to an error for the
     * corresponding feature, type of the error measure can be set in flags parameter; if the flow wasn't
     * found then the error is not defined (use the status parameter to find such cases).
     * @param winSize size of the search window at each pyramid level.
     * @param maxLevel 0-based maximal pyramid level number; if set to 0, pyramids are not used (single
     * level), if set to 1, two levels are used, and so on; if pyramids are passed to input then
     * algorithm will use as many levels as pyramids have but no more than maxLevel.
     * (after the specified maximum number of iterations criteria.maxCount or when the search window
     * moves by less than criteria.epsilon.
     * <ul>
     *   <li>
     *     <b>OPTFLOW_USE_INITIAL_FLOW</b> uses initial estimations, stored in nextPts; if the flag is
     *      not set, then prevPts is copied to nextPts and is considered the initial estimate.
     *   </li>
     *   <li>
     *     <b>OPTFLOW_LK_GET_MIN_EIGENVALS</b> use minimum eigen values as an error measure (see
     *      minEigThreshold description); if the flag is not set, then L1 distance between patches
     *      around the original and a moved point, divided by number of pixels in a window, is used as a
     *      error measure.
     *   </li>
     * </ul>
     * optical flow equations (this matrix is called a spatial gradient matrix in CITE: Bouguet00), divided
     * by number of pixels in a window; if this value is less than minEigThreshold, then a corresponding
     * feature is filtered out and its flow is not processed, so it allows to remove bad points and get a
     * performance boost.
     *
     * The function implements a sparse iterative version of the Lucas-Kanade optical flow in pyramids. See
     * CITE: Bouguet00 . The function is parallelized with the TBB library.
     *
     * <b>Note:</b> Some examples:
     *
     * <ul>
     *   <li>
     *    An example using the Lucas-Kanade optical flow algorithm can be found at
     *     opencv_source_code/samples/cpp/lkdemo.cpp
     *   </li>
     *   <li>
     *    (Python) An example using the Lucas-Kanade optical flow algorithm can be found at
     *     opencv_source_code/samples/python/lk_track.py
     *   </li>
     *   <li>
     *    (Python) An example using the Lucas-Kanade tracker for homography matching can be found at
     *     opencv_source_code/samples/python/lk_homography.py
     *   </li>
     * </ul>
     */
    public static void calcOpticalFlowPyrLK(Mat prevImg, Mat nextImg, MatOfPoint2f prevPts, MatOfPoint2f nextPts, MatOfByte status, MatOfFloat err, Size winSize, int maxLevel) {
        Mat prevPts_mat = prevPts;
        Mat nextPts_mat = nextPts;
        Mat status_mat = status;
        Mat err_mat = err;
        calcOpticalFlowPyrLK_3(prevImg.nativeObj, nextImg.nativeObj, prevPts_mat.nativeObj, nextPts_mat.nativeObj, status_mat.nativeObj, err_mat.nativeObj, winSize.width, winSize.height, maxLevel);
    }

    /**
     * Calculates an optical flow for a sparse feature set using the iterative Lucas-Kanade method with
     * pyramids.
     *
     * @param prevImg first 8-bit input image or pyramid constructed by buildOpticalFlowPyramid.
     * @param nextImg second input image or pyramid of the same size and the same type as prevImg.
     * @param prevPts vector of 2D points for which the flow needs to be found; point coordinates must be
     * single-precision floating-point numbers.
     * @param nextPts output vector of 2D points (with single-precision floating-point coordinates)
     * containing the calculated new positions of input features in the second image; when
     * OPTFLOW_USE_INITIAL_FLOW flag is passed, the vector must have the same size as in the input.
     * @param status output status vector (of unsigned chars); each element of the vector is set to 1 if
     * the flow for the corresponding features has been found, otherwise, it is set to 0.
     * @param err output vector of errors; each element of the vector is set to an error for the
     * corresponding feature, type of the error measure can be set in flags parameter; if the flow wasn't
     * found then the error is not defined (use the status parameter to find such cases).
     * @param winSize size of the search window at each pyramid level.
     * level), if set to 1, two levels are used, and so on; if pyramids are passed to input then
     * algorithm will use as many levels as pyramids have but no more than maxLevel.
     * (after the specified maximum number of iterations criteria.maxCount or when the search window
     * moves by less than criteria.epsilon.
     * <ul>
     *   <li>
     *     <b>OPTFLOW_USE_INITIAL_FLOW</b> uses initial estimations, stored in nextPts; if the flag is
     *      not set, then prevPts is copied to nextPts and is considered the initial estimate.
     *   </li>
     *   <li>
     *     <b>OPTFLOW_LK_GET_MIN_EIGENVALS</b> use minimum eigen values as an error measure (see
     *      minEigThreshold description); if the flag is not set, then L1 distance between patches
     *      around the original and a moved point, divided by number of pixels in a window, is used as a
     *      error measure.
     *   </li>
     * </ul>
     * optical flow equations (this matrix is called a spatial gradient matrix in CITE: Bouguet00), divided
     * by number of pixels in a window; if this value is less than minEigThreshold, then a corresponding
     * feature is filtered out and its flow is not processed, so it allows to remove bad points and get a
     * performance boost.
     *
     * The function implements a sparse iterative version of the Lucas-Kanade optical flow in pyramids. See
     * CITE: Bouguet00 . The function is parallelized with the TBB library.
     *
     * <b>Note:</b> Some examples:
     *
     * <ul>
     *   <li>
     *    An example using the Lucas-Kanade optical flow algorithm can be found at
     *     opencv_source_code/samples/cpp/lkdemo.cpp
     *   </li>
     *   <li>
     *    (Python) An example using the Lucas-Kanade optical flow algorithm can be found at
     *     opencv_source_code/samples/python/lk_track.py
     *   </li>
     *   <li>
     *    (Python) An example using the Lucas-Kanade tracker for homography matching can be found at
     *     opencv_source_code/samples/python/lk_homography.py
     *   </li>
     * </ul>
     */
    public static void calcOpticalFlowPyrLK(Mat prevImg, Mat nextImg, MatOfPoint2f prevPts, MatOfPoint2f nextPts, MatOfByte status, MatOfFloat err, Size winSize) {
        Mat prevPts_mat = prevPts;
        Mat nextPts_mat = nextPts;
        Mat status_mat = status;
        Mat err_mat = err;
        calcOpticalFlowPyrLK_4(prevImg.nativeObj, nextImg.nativeObj, prevPts_mat.nativeObj, nextPts_mat.nativeObj, status_mat.nativeObj, err_mat.nativeObj, winSize.width, winSize.height);
    }

    /**
     * Calculates an optical flow for a sparse feature set using the iterative Lucas-Kanade method with
     * pyramids.
     *
     * @param prevImg first 8-bit input image or pyramid constructed by buildOpticalFlowPyramid.
     * @param nextImg second input image or pyramid of the same size and the same type as prevImg.
     * @param prevPts vector of 2D points for which the flow needs to be found; point coordinates must be
     * single-precision floating-point numbers.
     * @param nextPts output vector of 2D points (with single-precision floating-point coordinates)
     * containing the calculated new positions of input features in the second image; when
     * OPTFLOW_USE_INITIAL_FLOW flag is passed, the vector must have the same size as in the input.
     * @param status output status vector (of unsigned chars); each element of the vector is set to 1 if
     * the flow for the corresponding features has been found, otherwise, it is set to 0.
     * @param err output vector of errors; each element of the vector is set to an error for the
     * corresponding feature, type of the error measure can be set in flags parameter; if the flow wasn't
     * found then the error is not defined (use the status parameter to find such cases).
     * level), if set to 1, two levels are used, and so on; if pyramids are passed to input then
     * algorithm will use as many levels as pyramids have but no more than maxLevel.
     * (after the specified maximum number of iterations criteria.maxCount or when the search window
     * moves by less than criteria.epsilon.
     * <ul>
     *   <li>
     *     <b>OPTFLOW_USE_INITIAL_FLOW</b> uses initial estimations, stored in nextPts; if the flag is
     *      not set, then prevPts is copied to nextPts and is considered the initial estimate.
     *   </li>
     *   <li>
     *     <b>OPTFLOW_LK_GET_MIN_EIGENVALS</b> use minimum eigen values as an error measure (see
     *      minEigThreshold description); if the flag is not set, then L1 distance between patches
     *      around the original and a moved point, divided by number of pixels in a window, is used as a
     *      error measure.
     *   </li>
     * </ul>
     * optical flow equations (this matrix is called a spatial gradient matrix in CITE: Bouguet00), divided
     * by number of pixels in a window; if this value is less than minEigThreshold, then a corresponding
     * feature is filtered out and its flow is not processed, so it allows to remove bad points and get a
     * performance boost.
     *
     * The function implements a sparse iterative version of the Lucas-Kanade optical flow in pyramids. See
     * CITE: Bouguet00 . The function is parallelized with the TBB library.
     *
     * <b>Note:</b> Some examples:
     *
     * <ul>
     *   <li>
     *    An example using the Lucas-Kanade optical flow algorithm can be found at
     *     opencv_source_code/samples/cpp/lkdemo.cpp
     *   </li>
     *   <li>
     *    (Python) An example using the Lucas-Kanade optical flow algorithm can be found at
     *     opencv_source_code/samples/python/lk_track.py
     *   </li>
     *   <li>
     *    (Python) An example using the Lucas-Kanade tracker for homography matching can be found at
     *     opencv_source_code/samples/python/lk_homography.py
     *   </li>
     * </ul>
     */
    public static void calcOpticalFlowPyrLK(Mat prevImg, Mat nextImg, MatOfPoint2f prevPts, MatOfPoint2f nextPts, MatOfByte status, MatOfFloat err) {
        Mat prevPts_mat = prevPts;
        Mat nextPts_mat = nextPts;
        Mat status_mat = status;
        Mat err_mat = err;
        calcOpticalFlowPyrLK_5(prevImg.nativeObj, nextImg.nativeObj, prevPts_mat.nativeObj, nextPts_mat.nativeObj, status_mat.nativeObj, err_mat.nativeObj);
    }


    //
    // C++:  void cv::calcOpticalFlowFarneback(Mat prev, Mat next, Mat& flow, double pyr_scale, int levels, int winsize, int iterations, int poly_n, double poly_sigma, int flags)
    //

    /**
     * Computes a dense optical flow using the Gunnar Farneback's algorithm.
     *
     * @param prev first 8-bit single-channel input image.
     * @param next second input image of the same size and the same type as prev.
     * @param flow computed flow image that has the same size as prev and type CV_32FC2.
     * @param pyr_scale parameter, specifying the image scale (&lt;1) to build pyramids for each image;
     * pyr_scale=0.5 means a classical pyramid, where each next layer is twice smaller than the previous
     * one.
     * @param levels number of pyramid layers including the initial image; levels=1 means that no extra
     * layers are created and only the original images are used.
     * @param winsize averaging window size; larger values increase the algorithm robustness to image
     * noise and give more chances for fast motion detection, but yield more blurred motion field.
     * @param iterations number of iterations the algorithm does at each pyramid level.
     * @param poly_n size of the pixel neighborhood used to find polynomial expansion in each pixel;
     * larger values mean that the image will be approximated with smoother surfaces, yielding more
     * robust algorithm and more blurred motion field, typically poly_n =5 or 7.
     * @param poly_sigma standard deviation of the Gaussian that is used to smooth derivatives used as a
     * basis for the polynomial expansion; for poly_n=5, you can set poly_sigma=1.1, for poly_n=7, a
     * good value would be poly_sigma=1.5.
     * @param flags operation flags that can be a combination of the following:
     * <ul>
     *   <li>
     *     <b>OPTFLOW_USE_INITIAL_FLOW</b> uses the input flow as an initial flow approximation.
     *   </li>
     *   <li>
     *     <b>OPTFLOW_FARNEBACK_GAUSSIAN</b> uses the Gaussian \(\texttt{winsize}\times\texttt{winsize}\)
     *      filter instead of a box filter of the same size for optical flow estimation; usually, this
     *      option gives z more accurate flow than with a box filter, at the cost of lower speed;
     *      normally, winsize for a Gaussian window should be set to a larger value to achieve the same
     *      level of robustness.
     *   </li>
     * </ul>
     *
     * The function finds an optical flow for each prev pixel using the CITE: Farneback2003 algorithm so that
     *
     * \(\texttt{prev} (y,x)  \sim \texttt{next} ( y + \texttt{flow} (y,x)[1],  x + \texttt{flow} (y,x)[0])\)
     *
     * <b>Note:</b> Some examples:
     *
     * <ul>
     *   <li>
     *    An example using the optical flow algorithm described by Gunnar Farneback can be found at
     *     opencv_source_code/samples/cpp/fback.cpp
     *   </li>
     *   <li>
     *    (Python) An example using the optical flow algorithm described by Gunnar Farneback can be
     *     found at opencv_source_code/samples/python/opt_flow.py
     *   </li>
     * </ul>
     */
    public static void calcOpticalFlowFarneback(Mat prev, Mat next, Mat flow, double pyr_scale, int levels, int winsize, int iterations, int poly_n, double poly_sigma, int flags) {
        calcOpticalFlowFarneback_0(prev.nativeObj, next.nativeObj, flow.nativeObj, pyr_scale, levels, winsize, iterations, poly_n, poly_sigma, flags);
    }


    //
    // C++:  double cv::computeECC(Mat templateImage, Mat inputImage, Mat inputMask = Mat())
    //

    /**
     * Computes the Enhanced Correlation Coefficient value between two images CITE: EP08 .
     *
     * @param templateImage single-channel template image; CV_8U or CV_32F array.
     * @param inputImage single-channel input image to be warped to provide an image similar to
     *  templateImage, same type as templateImage.
     * @param inputMask An optional mask to indicate valid values of inputImage.
     *
     * SEE:
     * findTransformECC
     * @return automatically generated
     */
    public static double computeECC(Mat templateImage, Mat inputImage, Mat inputMask) {
        return computeECC_0(templateImage.nativeObj, inputImage.nativeObj, inputMask.nativeObj);
    }

    /**
     * Computes the Enhanced Correlation Coefficient value between two images CITE: EP08 .
     *
     * @param templateImage single-channel template image; CV_8U or CV_32F array.
     * @param inputImage single-channel input image to be warped to provide an image similar to
     *  templateImage, same type as templateImage.
     *
     * SEE:
     * findTransformECC
     * @return automatically generated
     */
    public static double computeECC(Mat templateImage, Mat inputImage) {
        return computeECC_1(templateImage.nativeObj, inputImage.nativeObj);
    }


    //
    // C++:  double cv::findTransformECC(Mat templateImage, Mat inputImage, Mat& warpMatrix, int motionType, TermCriteria criteria, Mat inputMask, int gaussFiltSize)
    //

    /**
     * Finds the geometric transform (warp) between two images in terms of the ECC criterion CITE: EP08 .
     *
     * @param templateImage single-channel template image; CV_8U or CV_32F array.
     * @param inputImage single-channel input image which should be warped with the final warpMatrix in
     * order to provide an image similar to templateImage, same type as templateImage.
     * @param warpMatrix floating-point \(2\times 3\) or \(3\times 3\) mapping matrix (warp).
     * @param motionType parameter, specifying the type of motion:
     * <ul>
     *   <li>
     *     <b>MOTION_TRANSLATION</b> sets a translational motion model; warpMatrix is \(2\times 3\) with
     *      the first \(2\times 2\) part being the unity matrix and the rest two parameters being
     *      estimated.
     *   </li>
     *   <li>
     *     <b>MOTION_EUCLIDEAN</b> sets a Euclidean (rigid) transformation as motion model; three
     *      parameters are estimated; warpMatrix is \(2\times 3\).
     *   </li>
     *   <li>
     *     <b>MOTION_AFFINE</b> sets an affine motion model (DEFAULT); six parameters are estimated;
     *      warpMatrix is \(2\times 3\).
     *   </li>
     *   <li>
     *     <b>MOTION_HOMOGRAPHY</b> sets a homography as a motion model; eight parameters are
     *      estimated;\{@code warpMatrix\} is \(3\times 3\).
     *   </li>
     * </ul>
     * @param criteria parameter, specifying the termination criteria of the ECC algorithm;
     * criteria.epsilon defines the threshold of the increment in the correlation coefficient between two
     * iterations (a negative criteria.epsilon makes criteria.maxcount the only termination criterion).
     * Default values are shown in the declaration above.
     * @param inputMask An optional mask to indicate valid values of inputImage.
     * @param gaussFiltSize An optional value indicating size of gaussian blur filter; (DEFAULT: 5)
     *
     * The function estimates the optimum transformation (warpMatrix) with respect to ECC criterion
     * (CITE: EP08), that is
     *
     * \(\texttt{warpMatrix} = \arg\max_{W} \texttt{ECC}(\texttt{templateImage}(x,y),\texttt{inputImage}(x',y'))\)
     *
     * where
     *
     * \(\begin{bmatrix} x' \\ y' \end{bmatrix} = W \cdot \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}\)
     *
     * (the equation holds with homogeneous coordinates for homography). It returns the final enhanced
     * correlation coefficient, that is the correlation coefficient between the template image and the
     * final warped input image. When a \(3\times 3\) matrix is given with motionType =0, 1 or 2, the third
     * row is ignored.
     *
     * Unlike findHomography and estimateRigidTransform, the function findTransformECC implements an
     * area-based alignment that builds on intensity similarities. In essence, the function updates the
     * initial transformation that roughly aligns the images. If this information is missing, the identity
     * warp (unity matrix) is used as an initialization. Note that if images undergo strong
     * displacements/rotations, an initial transformation that roughly aligns the images is necessary
     * (e.g., a simple euclidean/similarity transform that allows for the images showing the same image
     * content approximately). Use inverse warping in the second image to take an image close to the first
     * one, i.e. use the flag WARP_INVERSE_MAP with warpAffine or warpPerspective. See also the OpenCV
     * sample image_alignment.cpp that demonstrates the use of the function. Note that the function throws
     * an exception if algorithm does not converges.
     *
     * SEE:
     * computeECC, estimateAffine2D, estimateAffinePartial2D, findHomography
     * @return automatically generated
     */
    public static double findTransformECC(Mat templateImage, Mat inputImage, Mat warpMatrix, int motionType, TermCriteria criteria, Mat inputMask, int gaussFiltSize) {
        return findTransformECC_0(templateImage.nativeObj, inputImage.nativeObj, warpMatrix.nativeObj, motionType, criteria.type, criteria.maxCount, criteria.epsilon, inputMask.nativeObj, gaussFiltSize);
    }


    //
    // C++:  double cv::findTransformECC(Mat templateImage, Mat inputImage, Mat& warpMatrix, int motionType = MOTION_AFFINE, TermCriteria criteria = TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, 50, 0.001), Mat inputMask = Mat())
    //

    public static double findTransformECC(Mat templateImage, Mat inputImage, Mat warpMatrix, int motionType, TermCriteria criteria, Mat inputMask) {
        return findTransformECC_1(templateImage.nativeObj, inputImage.nativeObj, warpMatrix.nativeObj, motionType, criteria.type, criteria.maxCount, criteria.epsilon, inputMask.nativeObj);
    }

    public static double findTransformECC(Mat templateImage, Mat inputImage, Mat warpMatrix, int motionType, TermCriteria criteria) {
        return findTransformECC_2(templateImage.nativeObj, inputImage.nativeObj, warpMatrix.nativeObj, motionType, criteria.type, criteria.maxCount, criteria.epsilon);
    }

    public static double findTransformECC(Mat templateImage, Mat inputImage, Mat warpMatrix, int motionType) {
        return findTransformECC_3(templateImage.nativeObj, inputImage.nativeObj, warpMatrix.nativeObj, motionType);
    }

    public static double findTransformECC(Mat templateImage, Mat inputImage, Mat warpMatrix) {
        return findTransformECC_4(templateImage.nativeObj, inputImage.nativeObj, warpMatrix.nativeObj);
    }


    //
    // C++:  Mat cv::readOpticalFlow(String path)
    //

    /**
     * Read a .flo file
     *
     *  @param path Path to the file to be loaded
     *
     *  The function readOpticalFlow loads a flow field from a file and returns it as a single matrix.
     *  Resulting Mat has a type CV_32FC2 - floating-point, 2-channel. First channel corresponds to the
     *  flow in the horizontal direction (u), second - vertical (v).
     * @return automatically generated
     */
    public static Mat readOpticalFlow(String path) {
        return new Mat(readOpticalFlow_0(path));
    }


    //
    // C++:  bool cv::writeOpticalFlow(String path, Mat flow)
    //

    /**
     * Write a .flo to disk
     *
     *  @param path Path to the file to be written
     *  @param flow Flow field to be stored
     *
     *  The function stores a flow field in a file, returns true on success, false otherwise.
     *  The flow field must be a 2-channel, floating-point matrix (CV_32FC2). First channel corresponds
     *  to the flow in the horizontal direction (u), second - vertical (v).
     * @return automatically generated
     */
    public static boolean writeOpticalFlow(String path, Mat flow) {
        return writeOpticalFlow_0(path, flow.nativeObj);
    }




    // C++:  Ptr_BackgroundSubtractorMOG2 cv::createBackgroundSubtractorMOG2(int history = 500, double varThreshold = 16, bool detectShadows = true)
    private static native long createBackgroundSubtractorMOG2_0(int history, double varThreshold, boolean detectShadows);
    private static native long createBackgroundSubtractorMOG2_1(int history, double varThreshold);
    private static native long createBackgroundSubtractorMOG2_2(int history);
    private static native long createBackgroundSubtractorMOG2_3();

    // C++:  Ptr_BackgroundSubtractorKNN cv::createBackgroundSubtractorKNN(int history = 500, double dist2Threshold = 400.0, bool detectShadows = true)
    private static native long createBackgroundSubtractorKNN_0(int history, double dist2Threshold, boolean detectShadows);
    private static native long createBackgroundSubtractorKNN_1(int history, double dist2Threshold);
    private static native long createBackgroundSubtractorKNN_2(int history);
    private static native long createBackgroundSubtractorKNN_3();

    // C++:  RotatedRect cv::CamShift(Mat probImage, Rect& window, TermCriteria criteria)
    private static native double[] CamShift_0(long probImage_nativeObj, int window_x, int window_y, int window_width, int window_height, double[] window_out, int criteria_type, int criteria_maxCount, double criteria_epsilon);

    // C++:  int cv::meanShift(Mat probImage, Rect& window, TermCriteria criteria)
    private static native int meanShift_0(long probImage_nativeObj, int window_x, int window_y, int window_width, int window_height, double[] window_out, int criteria_type, int criteria_maxCount, double criteria_epsilon);

    // C++:  int cv::buildOpticalFlowPyramid(Mat img, vector_Mat& pyramid, Size winSize, int maxLevel, bool withDerivatives = true, int pyrBorder = BORDER_REFLECT_101, int derivBorder = BORDER_CONSTANT, bool tryReuseInputImage = true)
    private static native int buildOpticalFlowPyramid_0(long img_nativeObj, long pyramid_mat_nativeObj, double winSize_width, double winSize_height, int maxLevel, boolean withDerivatives, int pyrBorder, int derivBorder, boolean tryReuseInputImage);
    private static native int buildOpticalFlowPyramid_1(long img_nativeObj, long pyramid_mat_nativeObj, double winSize_width, double winSize_height, int maxLevel, boolean withDerivatives, int pyrBorder, int derivBorder);
    private static native int buildOpticalFlowPyramid_2(long img_nativeObj, long pyramid_mat_nativeObj, double winSize_width, double winSize_height, int maxLevel, boolean withDerivatives, int pyrBorder);
    private static native int buildOpticalFlowPyramid_3(long img_nativeObj, long pyramid_mat_nativeObj, double winSize_width, double winSize_height, int maxLevel, boolean withDerivatives);
    private static native int buildOpticalFlowPyramid_4(long img_nativeObj, long pyramid_mat_nativeObj, double winSize_width, double winSize_height, int maxLevel);

    // C++:  void cv::calcOpticalFlowPyrLK(Mat prevImg, Mat nextImg, vector_Point2f prevPts, vector_Point2f& nextPts, vector_uchar& status, vector_float& err, Size winSize = Size(21,21), int maxLevel = 3, TermCriteria criteria = TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, 30, 0.01), int flags = 0, double minEigThreshold = 1e-4)
    private static native void calcOpticalFlowPyrLK_0(long prevImg_nativeObj, long nextImg_nativeObj, long prevPts_mat_nativeObj, long nextPts_mat_nativeObj, long status_mat_nativeObj, long err_mat_nativeObj, double winSize_width, double winSize_height, int maxLevel, int criteria_type, int criteria_maxCount, double criteria_epsilon, int flags, double minEigThreshold);
    private static native void calcOpticalFlowPyrLK_1(long prevImg_nativeObj, long nextImg_nativeObj, long prevPts_mat_nativeObj, long nextPts_mat_nativeObj, long status_mat_nativeObj, long err_mat_nativeObj, double winSize_width, double winSize_height, int maxLevel, int criteria_type, int criteria_maxCount, double criteria_epsilon, int flags);
    private static native void calcOpticalFlowPyrLK_2(long prevImg_nativeObj, long nextImg_nativeObj, long prevPts_mat_nativeObj, long nextPts_mat_nativeObj, long status_mat_nativeObj, long err_mat_nativeObj, double winSize_width, double winSize_height, int maxLevel, int criteria_type, int criteria_maxCount, double criteria_epsilon);
    private static native void calcOpticalFlowPyrLK_3(long prevImg_nativeObj, long nextImg_nativeObj, long prevPts_mat_nativeObj, long nextPts_mat_nativeObj, long status_mat_nativeObj, long err_mat_nativeObj, double winSize_width, double winSize_height, int maxLevel);
    private static native void calcOpticalFlowPyrLK_4(long prevImg_nativeObj, long nextImg_nativeObj, long prevPts_mat_nativeObj, long nextPts_mat_nativeObj, long status_mat_nativeObj, long err_mat_nativeObj, double winSize_width, double winSize_height);
    private static native void calcOpticalFlowPyrLK_5(long prevImg_nativeObj, long nextImg_nativeObj, long prevPts_mat_nativeObj, long nextPts_mat_nativeObj, long status_mat_nativeObj, long err_mat_nativeObj);

    // C++:  void cv::calcOpticalFlowFarneback(Mat prev, Mat next, Mat& flow, double pyr_scale, int levels, int winsize, int iterations, int poly_n, double poly_sigma, int flags)
    private static native void calcOpticalFlowFarneback_0(long prev_nativeObj, long next_nativeObj, long flow_nativeObj, double pyr_scale, int levels, int winsize, int iterations, int poly_n, double poly_sigma, int flags);

    // C++:  double cv::computeECC(Mat templateImage, Mat inputImage, Mat inputMask = Mat())
    private static native double computeECC_0(long templateImage_nativeObj, long inputImage_nativeObj, long inputMask_nativeObj);
    private static native double computeECC_1(long templateImage_nativeObj, long inputImage_nativeObj);

    // C++:  double cv::findTransformECC(Mat templateImage, Mat inputImage, Mat& warpMatrix, int motionType, TermCriteria criteria, Mat inputMask, int gaussFiltSize)
    private static native double findTransformECC_0(long templateImage_nativeObj, long inputImage_nativeObj, long warpMatrix_nativeObj, int motionType, int criteria_type, int criteria_maxCount, double criteria_epsilon, long inputMask_nativeObj, int gaussFiltSize);

    // C++:  double cv::findTransformECC(Mat templateImage, Mat inputImage, Mat& warpMatrix, int motionType = MOTION_AFFINE, TermCriteria criteria = TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, 50, 0.001), Mat inputMask = Mat())
    private static native double findTransformECC_1(long templateImage_nativeObj, long inputImage_nativeObj, long warpMatrix_nativeObj, int motionType, int criteria_type, int criteria_maxCount, double criteria_epsilon, long inputMask_nativeObj);
    private static native double findTransformECC_2(long templateImage_nativeObj, long inputImage_nativeObj, long warpMatrix_nativeObj, int motionType, int criteria_type, int criteria_maxCount, double criteria_epsilon);
    private static native double findTransformECC_3(long templateImage_nativeObj, long inputImage_nativeObj, long warpMatrix_nativeObj, int motionType);
    private static native double findTransformECC_4(long templateImage_nativeObj, long inputImage_nativeObj, long warpMatrix_nativeObj);

    // C++:  Mat cv::readOpticalFlow(String path)
    private static native long readOpticalFlow_0(String path);

    // C++:  bool cv::writeOpticalFlow(String path, Mat flow)
    private static native boolean writeOpticalFlow_0(String path, long flow_nativeObj);

}