variant.hpp 26.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2018 Intel Corporation


#ifndef OPENCV_GAPI_UTIL_VARIANT_HPP
#define OPENCV_GAPI_UTIL_VARIANT_HPP

#include <array>
#include <type_traits>

#include <opencv2/gapi/util/compiler_hints.hpp>
#include <opencv2/gapi/util/throw.hpp>
#include <opencv2/gapi/util/util.hpp> // max_of_t
#include <opencv2/gapi/util/type_traits.hpp>

// A poor man's `variant` implementation, incompletely modeled against C++17 spec.
namespace cv
{
namespace util
{
    namespace detail
    {
        template<std::size_t I, typename Target, typename First, typename... Remaining>
        struct type_list_index_helper
        {
            static const constexpr bool is_same = std::is_same<Target, First>::value;
            static const constexpr std::size_t value =
                std::conditional<is_same, std::integral_constant<std::size_t, I>, type_list_index_helper<I + 1, Target, Remaining...>>::type::value;
        };

        template<std::size_t I, typename Target, typename First>
        struct type_list_index_helper<I, Target, First>
        {
            static_assert(std::is_same<Target, First>::value, "Type not found");
            static const constexpr std::size_t value = I;
        };
    }

    template<typename Target, typename... Types>
    struct type_list_index
    {
        static const constexpr std::size_t value = detail::type_list_index_helper<0, Target, Types...>::value;
    };

    template<std::size_t Index, class... Types >
    struct type_list_element
    {
        using type = typename std::tuple_element<Index, std::tuple<Types...> >::type;
    };

    class bad_variant_access: public std::exception
    {
    public:
        virtual const char *what() const noexcept override
        {
            return "Bad variant access";
        }
    };

    // Interface ///////////////////////////////////////////////////////////////
    struct monostate {};
    inline bool operator==(const util::monostate&, const util::monostate&)
    {
        return true;
    }

    template<typename... Ts> // FIXME: no references, arrays, and void
    class variant
    {
        // FIXME: Replace with std::aligned_union after gcc4.8 support is dropped
        static constexpr const std::size_t S = cv::detail::max_of_t<sizeof(Ts)...>::value;
        static constexpr const std::size_t A = cv::detail::max_of_t<alignof(Ts)...>::value;
        using Memory = typename std::aligned_storage<S, A>::type[1];

        template<typename T> struct cctr_h {
            static void help(Memory memory, const Memory from) {
                new (memory) T(*reinterpret_cast<const T*>(from));
            }
        };

        template<typename T> struct mctr_h {
            static void help(Memory memory, void *pval) {
                new (memory) T(std::move(*reinterpret_cast<T*>(pval)));
            }
        };

        //FIXME: unify with cctr_h and mctr_h
        template<typename T> struct cnvrt_ctor_h {
            static void help(Memory memory, void* from) {
                using util::decay_t;
                new (memory) decay_t<T>(std::forward<T>(*reinterpret_cast<decay_t<T>*>(from)));
            }
        };

        template<typename T> struct copy_h {
            static void help(Memory to, const Memory from) {
                *reinterpret_cast<T*>(to) = *reinterpret_cast<const T*>(from);
            }
        };

        template<typename T> struct move_h {
            static void help(Memory to, Memory from) {
                *reinterpret_cast<T*>(to) = std::move(*reinterpret_cast<T*>(from));
            }
        };

        //FIXME: unify with copy_h and move_h
        template<typename T> struct cnvrt_assign_h {
            static void help(Memory to, void* from) {
                using util::decay_t;
                *reinterpret_cast<decay_t<T>*>(to) = std::forward<T>(*reinterpret_cast<decay_t<T>*>(from));
            }
        };

        template<typename T> struct swap_h {
            static void help(Memory to, Memory from) {
                std::swap(*reinterpret_cast<T*>(to), *reinterpret_cast<T*>(from));
            }
        };

        template<typename T> struct dtor_h {
            static void help(Memory memory) {
                (void) memory; // MSCV warning
                reinterpret_cast<T*>(memory)->~T();
            }
        };

        template<typename T> struct equal_h {
            static bool help(const Memory lhs, const Memory rhs) {
                const T& t_lhs = *reinterpret_cast<const T*>(lhs);
                const T& t_rhs = *reinterpret_cast<const T*>(rhs);
                return t_lhs == t_rhs;
            }
        };

        typedef void (*CCtr) (Memory, const Memory);  // Copy c-tor (variant)
        typedef void (*MCtr) (Memory, void*);         // Generic move c-tor
        typedef void (*Copy) (Memory, const Memory);  // Copy assignment
        typedef void (*Move) (Memory, Memory);        // Move assignment

        typedef void (*Swap) (Memory, Memory);        // Swap
        typedef void (*Dtor) (Memory);                // Destructor

        using  cnvrt_assgn_t   = void (*) (Memory, void*);  // Converting assignment (via std::forward)
        using  cnvrt_ctor_t    = void (*) (Memory, void*);  // Converting constructor (via std::forward)

        typedef bool (*Equal)(const Memory, const Memory); // Equality test (external)

        static constexpr std::array<CCtr, sizeof...(Ts)> cctrs(){ return {{(&cctr_h<Ts>::help)...}};}
        static constexpr std::array<MCtr, sizeof...(Ts)> mctrs(){ return {{(&mctr_h<Ts>::help)...}};}
        static constexpr std::array<Copy, sizeof...(Ts)> cpyrs(){ return {{(&copy_h<Ts>::help)...}};}
        static constexpr std::array<Move, sizeof...(Ts)> mvers(){ return {{(&move_h<Ts>::help)...}};}
        static constexpr std::array<Swap, sizeof...(Ts)> swprs(){ return {{(&swap_h<Ts>::help)...}};}
        static constexpr std::array<Dtor, sizeof...(Ts)> dtors(){ return {{(&dtor_h<Ts>::help)...}};}

        template<bool cond, typename T>
        struct conditional_ref : std::conditional<cond, typename std::remove_reference<T>::type&, typename std::remove_reference<T>::type > {};

        template<bool cond, typename T>
        using conditional_ref_t = typename conditional_ref<cond, T>::type;


        template<bool is_lvalue_arg>
        static constexpr std::array<cnvrt_assgn_t, sizeof...(Ts)> cnvrt_assgnrs(){
            return {{(&cnvrt_assign_h<conditional_ref_t<is_lvalue_arg,Ts>>::help)...}};
        }

        template<bool is_lvalue_arg>
        static constexpr std::array<cnvrt_ctor_t, sizeof...(Ts)> cnvrt_ctors(){
            return {{(&cnvrt_ctor_h<conditional_ref_t<is_lvalue_arg,Ts>>::help)...}};
        }

        std::size_t m_index = 0;

    protected:
        template<typename T, typename... Us> friend T& get(variant<Us...> &v);
        template<typename T, typename... Us> friend const T& get(const variant<Us...> &v);
        template<typename T, typename... Us> friend T* get_if(variant<Us...> *v) noexcept;
        template<typename T, typename... Us> friend const T* get_if(const variant<Us...> *v) noexcept;

        template<typename... Us> friend bool operator==(const variant<Us...> &lhs,
                                                        const variant<Us...> &rhs);
        Memory memory;

    public:
        // Constructors
        variant() noexcept;
        variant(const variant& other);
        variant(variant&& other) noexcept;
        // are_different_t is a SFINAE trick to avoid variant(T &&t) with T=variant
        // for some reason, this version is called instead of variant(variant&& o) when
        // variant is used in STL containers (examples: vector assignment).
        template<
            typename T,
            typename = util::are_different_t<variant, T>
        >
        explicit variant(T&& t);
        // template<class T, class... Args> explicit variant(Args&&... args);
        // FIXME: other constructors

        // Destructor
        ~variant();

        // Assignment
        variant& operator=(const variant& rhs);
        variant& operator=(variant &&rhs) noexcept;

        // SFINAE trick to avoid operator=(T&&) with T=variant<>, see comment above
        template<
            typename T,
            typename = util::are_different_t<variant, T>
        >
        variant& operator=(T&& t) noexcept;

        // Observers
        std::size_t index() const noexcept;
        // FIXME: valueless_by_exception()

        // Modifiers
        // FIXME: emplace()
        void swap(variant &rhs) noexcept;

        // Non-C++17x!
        template<typename T> static constexpr std::size_t index_of();
    };

    // FIMXE: visit
    template<typename T, typename... Types>
    T* get_if(util::variant<Types...>* v) noexcept;

    template<typename T, typename... Types>
    const T* get_if(const util::variant<Types...>* v) noexcept;

    template<typename T, typename... Types>
    T& get(util::variant<Types...> &v);

    template<typename T, typename... Types>
    const T& get(const util::variant<Types...> &v);

    template<std::size_t Index, typename... Types>
    typename util::type_list_element<Index, Types...>::type& get(util::variant<Types...> &v);

    template<std::size_t Index, typename... Types>
    const typename util::type_list_element<Index, Types...>::type& get(const util::variant<Types...> &v);

    template<typename T, typename... Types>
    bool holds_alternative(const util::variant<Types...> &v) noexcept;


    // Visitor
    namespace detail
    {
        struct visitor_interface {};

        // Class `visitor_return_type_deduction_helper`
        // introduces solution for deduction `return_type` in `visit` function in common way
        // for both Lambda and class Visitor and keep one interface invocation point: `visit` only
        // his helper class is required to unify return_type deduction mechanism because
        // for Lambda it is possible to take type of `decltype(visitor(get<0>(var)))`
        // but for class Visitor there is no operator() in base case,
        // because it provides `operator() (std::size_t index, ...)`
        // So `visitor_return_type_deduction_helper` expose `operator()`
        // uses only for class Visitor only for deduction `return type` in visit()
        template<typename R>
        struct visitor_return_type_deduction_helper
        {
            using return_type = R;

            // to be used in Lambda return type deduction context only
            template<typename T>
            return_type operator() (T&&);
        };
    }

    // Special purpose `static_visitor` can receive additional arguments
    template<typename R, typename Impl>
    struct static_visitor : public detail::visitor_interface,
                            public detail::visitor_return_type_deduction_helper<R> {

        // assign responsibility for return type deduction to helper class
        using return_type = typename detail::visitor_return_type_deduction_helper<R>::return_type;
        using detail::visitor_return_type_deduction_helper<R>::operator();
        friend Impl;

        template<typename VariantValue, typename ...Args>
        return_type operator() (std::size_t index, VariantValue&& value, Args&& ...args)
        {
            suppress_unused_warning(index);
            return static_cast<Impl*>(this)-> visit(
                                                std::forward<VariantValue>(value),
                                                std::forward<Args>(args)...);
        }
    };

    // Special purpose `static_indexed_visitor` can receive additional arguments
    // And make forwarding current variant index as runtime function argument to its `Impl`
    template<typename R, typename Impl>
    struct static_indexed_visitor : public detail::visitor_interface,
                                    public detail::visitor_return_type_deduction_helper<R> {

        // assign responsibility for return type deduction to helper class
        using return_type = typename detail::visitor_return_type_deduction_helper<R>::return_type;
        using detail::visitor_return_type_deduction_helper<R>::operator();
        friend Impl;

        template<typename VariantValue, typename ...Args>
        return_type operator() (std::size_t Index, VariantValue&& value, Args&& ...args)
        {
            return static_cast<Impl*>(this)-> visit(Index,
                                                std::forward<VariantValue>(value),
                                                std::forward<Args>(args)...);
        }
    };

    template <class T>
    struct variant_size;

    template <class... Types>
    struct variant_size<util::variant<Types...>>
        : std::integral_constant<std::size_t, sizeof...(Types)> { };
    // FIXME: T&&, const TT&& versions.

    // Implementation //////////////////////////////////////////////////////////
    template<typename... Ts>
    variant<Ts...>::variant() noexcept
    {
        typedef typename std::tuple_element<0, std::tuple<Ts...> >::type TFirst;
        new (memory) TFirst();
    }

    template<typename... Ts>
    variant<Ts...>::variant(const variant &other)
        : m_index(other.m_index)
    {
        (cctrs()[m_index])(memory, other.memory);
    }

    template<typename... Ts>
    variant<Ts...>::variant(variant &&other) noexcept
        : m_index(other.m_index)
    {
        (mctrs()[m_index])(memory, other.memory);
    }

    template<typename... Ts>
    template<class T, typename>
    variant<Ts...>::variant(T&& t)
        : m_index(util::type_list_index<util::decay_t<T>, Ts...>::value)
    {
        const constexpr bool is_lvalue_arg =  std::is_lvalue_reference<T>::value;
        (cnvrt_ctors<is_lvalue_arg>()[m_index])(memory, const_cast<util::decay_t<T> *>(&t));
    }

    template<typename... Ts>
    variant<Ts...>::~variant()
    {
        (dtors()[m_index])(memory);
    }

    template<typename... Ts>
    variant<Ts...>& variant<Ts...>::operator=(const variant<Ts...> &rhs)
    {
        if (m_index != rhs.m_index)
        {
            (dtors()[    m_index])(memory);
            (cctrs()[rhs.m_index])(memory, rhs.memory);
            m_index = rhs.m_index;
        }
        else
        {
            (cpyrs()[rhs.m_index])(memory, rhs.memory);
        }
        return *this;
    }

    template<typename... Ts>
    variant<Ts...>& variant<Ts...>::operator=(variant<Ts...> &&rhs) noexcept
    {
        if (m_index != rhs.m_index)
        {
            (dtors()[    m_index])(memory);
            (mctrs()[rhs.m_index])(memory, rhs.memory);
            m_index = rhs.m_index;
        }
        else
        {
            (mvers()[rhs.m_index])(memory, rhs.memory);
        }
        return *this;
    }

    template<typename... Ts>
    template<typename T, typename>
    variant<Ts...>& variant<Ts...>::operator=(T&& t) noexcept
    {
        using decayed_t = util::decay_t<T>;
        // FIXME: No version with implicit type conversion available!
        const constexpr std::size_t t_index =
            util::type_list_index<decayed_t, Ts...>::value;

        const constexpr bool is_lvalue_arg =  std::is_lvalue_reference<T>::value;

        if (t_index != m_index)
        {
            (dtors()[m_index])(memory);
            (cnvrt_ctors<is_lvalue_arg>()[t_index])(memory, &t);
            m_index = t_index;
        }
        else
        {
            (cnvrt_assgnrs<is_lvalue_arg>()[m_index])(memory, &t);
        }
        return *this;

    }

    template<typename... Ts>
    std::size_t util::variant<Ts...>::index() const noexcept
    {
        return m_index;
    }

    template<typename... Ts>
    void variant<Ts...>::swap(variant<Ts...> &rhs) noexcept
    {
        if (m_index == rhs.index())
        {
            (swprs()[m_index](memory, rhs.memory));
        }
        else
        {
            variant<Ts...> tmp(std::move(*this));
            *this = std::move(rhs);
            rhs   = std::move(tmp);
        }
    }

    template<typename... Ts>
    template<typename T>
    constexpr std::size_t variant<Ts...>::index_of()
    {
        return util::type_list_index<T, Ts...>::value; // FIXME: tests!
    }

    template<typename T, typename... Types>
    T* get_if(util::variant<Types...>* v) noexcept
    {
        const constexpr std::size_t t_index =
            util::type_list_index<T, Types...>::value;

        if (v && v->index() == t_index)
            return (T*)(&v->memory);  // workaround for ICC 2019
            // original code: return reinterpret_cast<T&>(v.memory);
        return nullptr;
    }

    template<typename T, typename... Types>
    const T* get_if(const util::variant<Types...>* v) noexcept
    {
        const constexpr std::size_t t_index =
            util::type_list_index<T, Types...>::value;

        if (v && v->index() == t_index)
            return (const T*)(&v->memory);  // workaround for ICC 2019
            // original code: return reinterpret_cast<const T&>(v.memory);
        return nullptr;
    }

    template<typename T, typename... Types>
    T& get(util::variant<Types...> &v)
    {
        if (auto* p = get_if<T>(&v))
            return *p;
        else
            throw_error(bad_variant_access());
    }

    template<typename T, typename... Types>
    const T& get(const util::variant<Types...> &v)
    {
        if (auto* p = get_if<T>(&v))
            return *p;
        else
            throw_error(bad_variant_access());
    }

    template<std::size_t Index, typename... Types>
    typename util::type_list_element<Index, Types...>::type& get(util::variant<Types...> &v)
    {
        using ReturnType = typename util::type_list_element<Index, Types...>::type;
        return const_cast<ReturnType&>(get<Index, Types...>(static_cast<const util::variant<Types...> &>(v)));
    }

    template<std::size_t Index, typename... Types>
    const typename util::type_list_element<Index, Types...>::type& get(const util::variant<Types...> &v)
    {
        static_assert(Index < sizeof...(Types),
                      "`Index` it out of bound of `util::variant` type list");
        using ReturnType = typename util::type_list_element<Index, Types...>::type;
        return get<ReturnType>(v);
    }

    template<typename T, typename... Types>
    bool holds_alternative(const util::variant<Types...> &v) noexcept
    {
        return v.index() == util::variant<Types...>::template index_of<T>();
    }

#if defined(__GNUC__) && (__GNUC__ == 11 || __GNUC__ == 12)
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wmaybe-uninitialized"
#endif

    template<typename... Us> bool operator==(const variant<Us...> &lhs,
                                             const variant<Us...> &rhs)
    {
        using V = variant<Us...>;

        // Instantiate table only here since it requires operator== for <Us...>
        // <Us...> should have operator== only if this one is used, not in general
        static const std::array<typename V::Equal, sizeof...(Us)> eqs = {
            {(&V::template equal_h<Us>::help)...}
        };
        if (lhs.index() != rhs.index())
            return false;
        return (eqs[lhs.index()])(lhs.memory, rhs.memory);
    }

#if defined(__GNUC__) && (__GNUC__ == 11 || __GNUC__ == 12)
#pragma GCC diagnostic pop
#endif

    template<typename... Us> bool operator!=(const variant<Us...> &lhs,
                                             const variant<Us...> &rhs)
    {
        return !(lhs == rhs);
    }

namespace detail
{
    // terminate recursion implementation for `non-void` ReturnType
    template<typename ReturnType, std::size_t CurIndex, std::size_t ElemCount,
             typename Visitor, typename Variant, typename... VisitorArgs>
    ReturnType apply_visitor_impl(Visitor&&, Variant&,
                                  std::true_type, std::false_type,
                                  VisitorArgs&& ...)
    {
        return {};
    }

    // terminate recursion implementation for `void` ReturnType
    template<typename ReturnType, std::size_t CurIndex, std::size_t ElemCount,
             typename Visitor, typename Variant, typename... VisitorArgs>
    void apply_visitor_impl(Visitor&&, Variant&,
                            std::true_type, std::true_type,
                            VisitorArgs&& ...)
    {
    }

    // Intermediate resursion processor for Lambda Visitors
    template<typename ReturnType, std::size_t CurIndex, std::size_t ElemCount,
             typename Visitor, typename Variant, bool no_return_value, typename... VisitorArgs>
    typename std::enable_if<!std::is_base_of<visitor_interface, typename std::decay<Visitor>::type>::value, ReturnType>::type
         apply_visitor_impl(Visitor&& visitor, Variant&& v, std::false_type not_processed,
                                               std::integral_constant<bool, no_return_value> should_no_return,
                                               VisitorArgs&& ...args)
    {
        static_assert(std::is_same<ReturnType, decltype(visitor(get<CurIndex>(v)))>::value,
                      "Different `ReturnType`s detected! All `Visitor::visit` or `overload_lamba_set`"
                      " must return the same type");
        suppress_unused_warning(not_processed);
        if (v.index() == CurIndex)
        {
            return visitor.operator()(get<CurIndex>(v), std::forward<VisitorArgs>(args)... );
        }

        using is_variant_processed_t = std::integral_constant<bool, CurIndex + 1 >= ElemCount>;
        return apply_visitor_impl<ReturnType, CurIndex +1, ElemCount>(
                                  std::forward<Visitor>(visitor),
                                  std::forward<Variant>(v),
                                  is_variant_processed_t{},
                                  should_no_return,
                                  std::forward<VisitorArgs>(args)...);
    }

    //Visual Studio 2014 compilation fix: cast visitor to base class before invoke operator()
    template<std::size_t CurIndex, typename ReturnType, typename Visitor, class Value, typename... VisitorArgs>
    typename std::enable_if<std::is_base_of<static_visitor<ReturnType, typename std::decay<Visitor>::type>,
                                            typename std::decay<Visitor>::type>::value, ReturnType>::type
    invoke_class_visitor(Visitor& visitor, Value&& v,  VisitorArgs&&...args)
    {
        return static_cast<static_visitor<ReturnType, typename std::decay<Visitor>::type>&>(visitor).operator() (CurIndex, std::forward<Value>(v), std::forward<VisitorArgs>(args)... );
    }

    //Visual Studio 2014 compilation fix: cast visitor to base class before invoke operator()
    template<std::size_t CurIndex, typename ReturnType, typename Visitor, class Value, typename... VisitorArgs>
    typename std::enable_if<std::is_base_of<static_indexed_visitor<ReturnType, typename std::decay<Visitor>::type>,
                                            typename std::decay<Visitor>::type>::value, ReturnType>::type
    invoke_class_visitor(Visitor& visitor, Value&& v,  VisitorArgs&&...args)
    {
        return static_cast<static_indexed_visitor<ReturnType, typename std::decay<Visitor>::type>&>(visitor).operator() (CurIndex, std::forward<Value>(v), std::forward<VisitorArgs>(args)... );
    }

    // Intermediate recursion processor for special case `visitor_interface` derived Visitors
    template<typename ReturnType, std::size_t CurIndex, std::size_t ElemCount,
             typename Visitor, typename Variant, bool no_return_value, typename... VisitorArgs>
    typename std::enable_if<std::is_base_of<visitor_interface, typename std::decay<Visitor>::type>::value, ReturnType>::type
         apply_visitor_impl(Visitor&& visitor, Variant&& v, std::false_type not_processed,
                                               std::integral_constant<bool, no_return_value> should_no_return,
                                               VisitorArgs&& ...args)
    {
        static_assert(std::is_same<ReturnType, decltype(visitor(get<CurIndex>(v)))>::value,
                      "Different `ReturnType`s detected! All `Visitor::visit` or `overload_lamba_set`"
                      " must return the same type");
        suppress_unused_warning(not_processed);
        if (v.index() == CurIndex)
        {
            return invoke_class_visitor<CurIndex, ReturnType>(visitor, get<CurIndex>(v), std::forward<VisitorArgs>(args)... );
        }

        using is_variant_processed_t = std::integral_constant<bool, CurIndex + 1 >= ElemCount>;
        return apply_visitor_impl<ReturnType, CurIndex +1, ElemCount>(
                                  std::forward<Visitor>(visitor),
                                  std::forward<Variant>(v),
                                  is_variant_processed_t{},
                                  should_no_return,
                                  std::forward<VisitorArgs>(args)...);
    }
} // namespace detail

    template<typename Visitor, typename Variant, typename... VisitorArg>
    auto visit(Visitor &visitor, const Variant& var, VisitorArg &&...args) -> decltype(visitor(get<0>(var)))
    {
        constexpr std::size_t varsize = util::variant_size<Variant>::value;
        static_assert(varsize != 0, "utils::variant must contains one type at least ");
        using is_variant_processed_t = std::false_type;

        using ReturnType = decltype(visitor(get<0>(var)));
        using return_t = std::is_same<ReturnType, void>;
        return detail::apply_visitor_impl<ReturnType, 0, varsize, Visitor>(
                                    std::forward<Visitor>(visitor),
                                    var, is_variant_processed_t{},
                                    return_t{},
                                    std::forward<VisitorArg>(args)...);
    }

    template<typename Visitor, typename Variant>
    auto visit(Visitor&& visitor, const Variant& var) -> decltype(visitor(get<0>(var)))
    {
        constexpr std::size_t varsize = util::variant_size<Variant>::value;
        static_assert(varsize != 0, "utils::variant must contains one type at least ");
        using is_variant_processed_t = std::false_type;

        using ReturnType = decltype(visitor(get<0>(var)));
        using return_t = std::is_same<ReturnType, void>;
        return detail::apply_visitor_impl<ReturnType, 0, varsize, Visitor>(
                                    std::forward<Visitor>(visitor),
                                    var, is_variant_processed_t{},
                                    return_t{});
    }
} // namespace util
} // namespace cv

#endif // OPENCV_GAPI_UTIL_VARIANT_HPP