gopaque.hpp 12.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2019-2020 Intel Corporation


#ifndef OPENCV_GAPI_GOPAQUE_HPP
#define OPENCV_GAPI_GOPAQUE_HPP

#include <functional>
#include <ostream>
#include <memory>

#include <opencv2/gapi/own/exports.hpp>
#include <opencv2/gapi/opencv_includes.hpp>

#include <opencv2/gapi/util/any.hpp>
#include <opencv2/gapi/util/variant.hpp>
#include <opencv2/gapi/util/throw.hpp>
#include <opencv2/gapi/util/type_traits.hpp>
#include <opencv2/gapi/own/assert.hpp>

#include <opencv2/gapi/gcommon.hpp>  // OpaqueKind
#include <opencv2/gapi/garray.hpp>  // TypeHintBase

namespace cv
{
// Forward declaration; GNode and GOrigin are an internal
// (user-inaccessible) classes.
class GNode;
struct GOrigin;
template<typename T> class GOpaque;

/**
 * \addtogroup gapi_meta_args
 * @{
 */
struct GAPI_EXPORTS_W_SIMPLE GOpaqueDesc
{
    // FIXME: Body
    // FIXME: Also implement proper operator== then
    bool operator== (const GOpaqueDesc&) const { return true; }
};
template<typename U> GOpaqueDesc descr_of(const U &) { return {};}
GAPI_EXPORTS_W inline GOpaqueDesc empty_gopaque_desc() {return {}; }
/** @} */

std::ostream& operator<<(std::ostream& os, const cv::GOpaqueDesc &desc);

namespace detail
{
    // ConstructOpaque is a callback which stores information about T and is used by
    // G-API runtime to construct an object in host memory (T remains opaque for G-API).
    // ConstructOpaque is carried into G-API internals by GOpaqueU.
    // Currently it is suitable for Host (CPU) plugins only, real offload may require
    // more information for manual memory allocation on-device.
    class OpaqueRef;
    using ConstructOpaque = std::function<void(OpaqueRef&)>;

    // FIXME: garray.hpp already contains hint classes (for actual T type verification),
    // need to think where it can be moved (currently opaque uses it from garray)

    // This class strips type information from GOpaque<T> and makes it usable
    // in the G-API graph compiler (expression unrolling, graph generation, etc).
    // Part of GProtoArg.
    class GAPI_EXPORTS GOpaqueU
    {
    public:
        GOpaqueU(const GNode &n, std::size_t out); // Operation result constructor

        template <typename T>
        bool holds() const;                       // Check if was created from GOpaque<T>

        GOrigin& priv();                          // Internal use only
        const GOrigin& priv() const;              // Internal use only

    protected:
        GOpaqueU();                                // Default constructor
        template<class> friend class cv::GOpaque;  // (available for GOpaque<T> only)

        void setConstructFcn(ConstructOpaque &&cv);  // Store T-aware constructor

        template <typename T>
        void specifyType();                       // Store type of initial GOpaque<T>

        template <typename T>
        void storeKind();

        void setKind(cv::detail::OpaqueKind);

        std::shared_ptr<GOrigin> m_priv;
        std::shared_ptr<TypeHintBase> m_hint;
    };

    template <typename T>
    bool GOpaqueU::holds() const{
        GAPI_Assert(m_hint != nullptr);
        using U = util::decay_t<T>;
        return dynamic_cast<TypeHint<U>*>(m_hint.get()) != nullptr;
    }

    template <typename T>
    void GOpaqueU::specifyType(){
        m_hint.reset(new TypeHint<util::decay_t<T>>);
    }

    template <typename T>
    void GOpaqueU::storeKind(){
        // FIXME: Add assert here on cv::Mat and cv::Scalar?
        setKind(cv::detail::GOpaqueTraits<T>::kind);
    }

    // This class represents a typed object reference.
    // Depending on origins, this reference may be either "just a" reference to
    // an object created externally, OR actually own the underlying object
    // (be value holder).
    class BasicOpaqueRef
    {
    public:
        cv::GOpaqueDesc m_desc;
        virtual ~BasicOpaqueRef() {}

        virtual void mov(BasicOpaqueRef &ref) = 0;
        virtual const void* ptr() const = 0;
        virtual void set(const cv::util::any &a) = 0;
    };

    template<typename T> class OpaqueRefT final: public BasicOpaqueRef
    {
        using empty_t  = util::monostate;
        using ro_ext_t = const T *;
        using rw_ext_t =       T *;
        using rw_own_t =       T  ;
        util::variant<empty_t, ro_ext_t, rw_ext_t, rw_own_t> m_ref;

        inline bool isEmpty() const { return util::holds_alternative<empty_t>(m_ref);  }
        inline bool isROExt() const { return util::holds_alternative<ro_ext_t>(m_ref); }
        inline bool isRWExt() const { return util::holds_alternative<rw_ext_t>(m_ref); }
        inline bool isRWOwn() const { return util::holds_alternative<rw_own_t>(m_ref); }

        void init(const T* obj = nullptr)
        {
            if (obj) m_desc = cv::descr_of(*obj);
        }

    public:
        OpaqueRefT() { init(); }
        virtual ~OpaqueRefT() {}

        explicit OpaqueRefT(const T&  obj) : m_ref(&obj)           { init(&obj); }
        explicit OpaqueRefT(      T&  obj) : m_ref(&obj)           { init(&obj); }
        explicit OpaqueRefT(      T&& obj) : m_ref(std::move(obj)) { init(&obj); }

        // Reset a OpaqueRefT. Called only for objects instantiated
        // internally in G-API (e.g. temporary GOpaque<T>'s within a
        // computation).  Reset here means both initialization
        // (creating an object) and reset (discarding its existing
        // content before the next execution). Must never be called
        // for external OpaqueRefTs.
        void reset()
        {
            if (isEmpty())
            {
                T empty_obj{};
                m_desc = cv::descr_of(empty_obj);
                m_ref  = std::move(empty_obj);
                GAPI_Assert(isRWOwn());
            }
            else if (isRWOwn())
            {
                util::get<rw_own_t>(m_ref) = {};
            }
            else GAPI_Error("InternalError"); // shouldn't be called in *EXT modes
        }

        // Obtain a WRITE reference to underlying object
        // Used by CPU kernel API wrappers when a kernel execution frame
        // is created
        T& wref()
        {
            GAPI_Assert(isRWExt() || isRWOwn());
            if (isRWExt()) return *util::get<rw_ext_t>(m_ref);
            if (isRWOwn()) return  util::get<rw_own_t>(m_ref);
            util::throw_error(std::logic_error("Impossible happened"));
        }

        // Obtain a READ reference to underlying object
        // Used by CPU kernel API wrappers when a kernel execution frame
        // is created
        const T& rref() const
        {
            // ANY object can be accessed for reading, even if it declared for
            // output. Example -- a GComputation from [in] to [out1,out2]
            // where [out2] is a result of operation applied to [out1]:
            //
            //            GComputation boundary
            //            . . . . . . .
            //            .           .
            //     [in] ----> foo() ----> [out1]
            //            .           .    :
            //            .           . . .:. . .
            //            .                V    .
            //            .              bar() ---> [out2]
            //            . . . . . . . . . . . .
            //
            if (isROExt()) return *util::get<ro_ext_t>(m_ref);
            if (isRWExt()) return *util::get<rw_ext_t>(m_ref);
            if (isRWOwn()) return  util::get<rw_own_t>(m_ref);
            util::throw_error(std::logic_error("Impossible happened"));
        }

        virtual void mov(BasicOpaqueRef &v) override {
            OpaqueRefT<T> *tv = dynamic_cast<OpaqueRefT<T>*>(&v);
            GAPI_Assert(tv != nullptr);
            wref() = std::move(tv->wref());
        }

        virtual const void* ptr() const override { return &rref(); }

        virtual void set(const cv::util::any &a) override {
            wref() = util::any_cast<T>(a);
        }
    };

    // This class strips type information from OpaqueRefT<> and makes it usable
    // in the G-API executables (carrying run-time data/information to kernels).
    // Part of GRunArg.
    // Its methods are typed proxies to OpaqueRefT<T>.
    // OpaqueRef maintains "reference" semantics so two copies of OpaqueRef refer
    // to the same underlying object.
    class OpaqueRef
    {
        std::shared_ptr<BasicOpaqueRef> m_ref;
        cv::detail::OpaqueKind m_kind = cv::detail::OpaqueKind::CV_UNKNOWN;

        template<typename T> inline void check() const
        {
            GAPI_DbgAssert(dynamic_cast<OpaqueRefT<T>*>(m_ref.get()) != nullptr);
        }

    public:
        OpaqueRef() = default;

        template<
            typename T,
            typename = util::are_different_t<OpaqueRef, T>
        >
        // FIXME: probably won't work with const object
        explicit OpaqueRef(T&& obj) :
            m_ref(new OpaqueRefT<util::decay_t<T>>(std::forward<T>(obj))),
            m_kind(GOpaqueTraits<util::decay_t<T>>::kind) {}

        cv::detail::OpaqueKind getKind() const
        {
            return m_kind;
        }

        template<typename T> void reset()
        {
            if (!m_ref) m_ref.reset(new OpaqueRefT<T>());
            check<T>();
            storeKind<T>();
            static_cast<OpaqueRefT<T>&>(*m_ref).reset();
        }

        template <typename T>
        void storeKind()
        {
            m_kind = cv::detail::GOpaqueTraits<T>::kind;
        }

        template<typename T> T& wref()
        {
            check<T>();
            return static_cast<OpaqueRefT<T>&>(*m_ref).wref();
        }

        template<typename T> const T& rref() const
        {
            check<T>();
            return static_cast<OpaqueRefT<T>&>(*m_ref).rref();
        }

        void mov(OpaqueRef &v)
        {
            m_ref->mov(*v.m_ref);
        }

        cv::GOpaqueDesc descr_of() const
        {
            return m_ref->m_desc;
        }

        // May be used to uniquely identify this object internally
        const void *ptr() const { return m_ref->ptr(); }

        // Introduced for in-graph meta handling
        OpaqueRef& operator= (const cv::util::any &a)
        {
            m_ref->set(a);
            return *this;
        }
    };
} // namespace detail

/** \addtogroup gapi_data_objects
 * @{
 */
/**
 * @brief `cv::GOpaque<T>` template class represents an object of
 * class `T` in the graph.
 *
 * `cv::GOpaque<T>` describes a functional relationship between operations
 * consuming and producing object of class `T`. `cv::GOpaque<T>` is
 * designed to extend G-API with user-defined data types, which are
 * often required with user-defined operations. G-API can't apply any
 * optimizations to user-defined types since these types are opaque to
 * the framework. However, there is a number of G-API operations
 * declared with `cv::GOpaque<T>` as a return type,
 * e.g. cv::gapi::streaming::timestamp() or cv::gapi::streaming::size().
 *
 * @sa `cv::GArray<T>`
 */
template<typename T> class GOpaque
{
public:
    // Host type (or Flat type) - the type this GOpaque is actually
    // specified to.
    /// @private
    using HT = typename detail::flatten_g<util::decay_t<T>>::type;

    /**
     * @brief Constructs an empty `cv::GOpaque<T>`
     *
     * Normally, empty G-API data objects denote a starting point of
     * the graph. When an empty `cv::GOpaque<T>` is assigned to a result
     * of some operation, it obtains a functional link to this
     * operation (and is not empty anymore).
     */
    GOpaque() { putDetails(); }              // Empty constructor

    /// @private
    explicit GOpaque(detail::GOpaqueU &&ref) // GOpaqueU-based constructor
        : m_ref(ref) { putDetails(); }       // (used by GCall, not for users)

    /// @private
    detail::GOpaqueU strip() const {
        return m_ref;
    }
    /// @private
    static void Ctor(detail::OpaqueRef& ref) {
        ref.reset<HT>();
    }
private:
    void putDetails() {
        m_ref.setConstructFcn(&Ctor);
        m_ref.specifyType<HT>();
        m_ref.storeKind<HT>();
    }

    detail::GOpaqueU m_ref;
};

/** @} */

} // namespace cv

#endif // OPENCV_GAPI_GOPAQUE_HPP