spvIR.h 16.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
//
// Copyright (C) 2014 LunarG, Inc.
// Copyright (C) 2015-2018 Google, Inc.
//
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
//
//    Redistributions of source code must retain the above copyright
//    notice, this list of conditions and the following disclaimer.
//
//    Redistributions in binary form must reproduce the above
//    copyright notice, this list of conditions and the following
//    disclaimer in the documentation and/or other materials provided
//    with the distribution.
//
//    Neither the name of 3Dlabs Inc. Ltd. nor the names of its
//    contributors may be used to endorse or promote products derived
//    from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
// FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
// COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
// INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
// BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
// LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
// LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
// ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.

// SPIRV-IR
//
// Simple in-memory representation (IR) of SPIRV.  Just for holding
// Each function's CFG of blocks.  Has this hierarchy:
//  - Module, which is a list of
//    - Function, which is a list of
//      - Block, which is a list of
//        - Instruction
//

#pragma once
#ifndef spvIR_H
#define spvIR_H

#include "spirv.hpp"

#include <algorithm>
#include <cassert>
#include <functional>
#include <iostream>
#include <memory>
#include <vector>
#include <set>

namespace spv {

class Block;
class Function;
class Module;

const Id NoResult = 0;
const Id NoType = 0;

const Decoration NoPrecision = DecorationMax;

#ifdef __GNUC__
#   define POTENTIALLY_UNUSED __attribute__((unused))
#else
#   define POTENTIALLY_UNUSED
#endif

POTENTIALLY_UNUSED
const MemorySemanticsMask MemorySemanticsAllMemory =
                (MemorySemanticsMask)(MemorySemanticsUniformMemoryMask |
                                      MemorySemanticsWorkgroupMemoryMask |
                                      MemorySemanticsAtomicCounterMemoryMask |
                                      MemorySemanticsImageMemoryMask);

struct IdImmediate {
    bool isId;      // true if word is an Id, false if word is an immediate
    unsigned word;
    IdImmediate(bool i, unsigned w) : isId(i), word(w) {}
};

//
// SPIR-V IR instruction.
//

class Instruction {
public:
    Instruction(Id resultId, Id typeId, Op opCode) : resultId(resultId), typeId(typeId), opCode(opCode), block(nullptr) { }
    explicit Instruction(Op opCode) : resultId(NoResult), typeId(NoType), opCode(opCode), block(nullptr) { }
    virtual ~Instruction() {}
    void addIdOperand(Id id) {
        operands.push_back(id);
        idOperand.push_back(true);
    }
    void addImmediateOperand(unsigned int immediate) {
        operands.push_back(immediate);
        idOperand.push_back(false);
    }
    void setImmediateOperand(unsigned idx, unsigned int immediate) {
        assert(!idOperand[idx]);
        operands[idx] = immediate;
    }

    void addStringOperand(const char* str)
    {
        unsigned int word;
        char* wordString = (char*)&word;
        char* wordPtr = wordString;
        int charCount = 0;
        char c;
        do {
            c = *(str++);
            *(wordPtr++) = c;
            ++charCount;
            if (charCount == 4) {
                addImmediateOperand(word);
                wordPtr = wordString;
                charCount = 0;
            }
        } while (c != 0);

        // deal with partial last word
        if (charCount > 0) {
            // pad with 0s
            for (; charCount < 4; ++charCount)
                *(wordPtr++) = 0;
            addImmediateOperand(word);
        }
    }
    bool isIdOperand(int op) const { return idOperand[op]; }
    void setBlock(Block* b) { block = b; }
    Block* getBlock() const { return block; }
    Op getOpCode() const { return opCode; }
    int getNumOperands() const
    {
        assert(operands.size() == idOperand.size());
        return (int)operands.size();
    }
    Id getResultId() const { return resultId; }
    Id getTypeId() const { return typeId; }
    Id getIdOperand(int op) const {
        assert(idOperand[op]);
        return operands[op];
    }
    unsigned int getImmediateOperand(int op) const {
        assert(!idOperand[op]);
        return operands[op];
    }

    // Write out the binary form.
    void dump(std::vector<unsigned int>& out) const
    {
        // Compute the wordCount
        unsigned int wordCount = 1;
        if (typeId)
            ++wordCount;
        if (resultId)
            ++wordCount;
        wordCount += (unsigned int)operands.size();

        // Write out the beginning of the instruction
        out.push_back(((wordCount) << WordCountShift) | opCode);
        if (typeId)
            out.push_back(typeId);
        if (resultId)
            out.push_back(resultId);

        // Write out the operands
        for (int op = 0; op < (int)operands.size(); ++op)
            out.push_back(operands[op]);
    }

protected:
    Instruction(const Instruction&);
    Id resultId;
    Id typeId;
    Op opCode;
    std::vector<Id> operands;     // operands, both <id> and immediates (both are unsigned int)
    std::vector<bool> idOperand;  // true for operands that are <id>, false for immediates
    Block* block;
};

//
// SPIR-V IR block.
//

class Block {
public:
    Block(Id id, Function& parent);
    virtual ~Block()
    {
    }

    Id getId() { return instructions.front()->getResultId(); }

    Function& getParent() const { return parent; }
    void addInstruction(std::unique_ptr<Instruction> inst);
    void addPredecessor(Block* pred) { predecessors.push_back(pred); pred->successors.push_back(this);}
    void addLocalVariable(std::unique_ptr<Instruction> inst) { localVariables.push_back(std::move(inst)); }
    const std::vector<Block*>& getPredecessors() const { return predecessors; }
    const std::vector<Block*>& getSuccessors() const { return successors; }
    const std::vector<std::unique_ptr<Instruction> >& getInstructions() const {
        return instructions;
    }
    const std::vector<std::unique_ptr<Instruction> >& getLocalVariables() const { return localVariables; }
    void setUnreachable() { unreachable = true; }
    bool isUnreachable() const { return unreachable; }
    // Returns the block's merge instruction, if one exists (otherwise null).
    const Instruction* getMergeInstruction() const {
        if (instructions.size() < 2) return nullptr;
        const Instruction* nextToLast = (instructions.cend() - 2)->get();
        switch (nextToLast->getOpCode()) {
            case OpSelectionMerge:
            case OpLoopMerge:
                return nextToLast;
            default:
                return nullptr;
        }
        return nullptr;
    }

    // Change this block into a canonical dead merge block.  Delete instructions
    // as necessary.  A canonical dead merge block has only an OpLabel and an
    // OpUnreachable.
    void rewriteAsCanonicalUnreachableMerge() {
        assert(localVariables.empty());
        // Delete all instructions except for the label.
        assert(instructions.size() > 0);
        instructions.resize(1);
        successors.clear();
        addInstruction(std::unique_ptr<Instruction>(new Instruction(OpUnreachable)));
    }
    // Change this block into a canonical dead continue target branching to the
    // given header ID.  Delete instructions as necessary.  A canonical dead continue
    // target has only an OpLabel and an unconditional branch back to the corresponding
    // header.
    void rewriteAsCanonicalUnreachableContinue(Block* header) {
        assert(localVariables.empty());
        // Delete all instructions except for the label.
        assert(instructions.size() > 0);
        instructions.resize(1);
        successors.clear();
        // Add OpBranch back to the header.
        assert(header != nullptr);
        Instruction* branch = new Instruction(OpBranch);
        branch->addIdOperand(header->getId());
        addInstruction(std::unique_ptr<Instruction>(branch));
        successors.push_back(header);
    }

    bool isTerminated() const
    {
        switch (instructions.back()->getOpCode()) {
        case OpBranch:
        case OpBranchConditional:
        case OpSwitch:
        case OpKill:
        case OpReturn:
        case OpReturnValue:
        case OpUnreachable:
            return true;
        default:
            return false;
        }
    }

    void dump(std::vector<unsigned int>& out) const
    {
        instructions[0]->dump(out);
        for (int i = 0; i < (int)localVariables.size(); ++i)
            localVariables[i]->dump(out);
        for (int i = 1; i < (int)instructions.size(); ++i)
            instructions[i]->dump(out);
    }

protected:
    Block(const Block&);
    Block& operator=(Block&);

    // To enforce keeping parent and ownership in sync:
    friend Function;

    std::vector<std::unique_ptr<Instruction> > instructions;
    std::vector<Block*> predecessors, successors;
    std::vector<std::unique_ptr<Instruction> > localVariables;
    Function& parent;

    // track whether this block is known to be uncreachable (not necessarily
    // true for all unreachable blocks, but should be set at least
    // for the extraneous ones introduced by the builder).
    bool unreachable;
};

// The different reasons for reaching a block in the inReadableOrder traversal.
enum ReachReason {
    // Reachable from the entry block via transfers of control, i.e. branches.
    ReachViaControlFlow = 0,
    // A continue target that is not reachable via control flow.
    ReachDeadContinue,
    // A merge block that is not reachable via control flow.
    ReachDeadMerge
};

// Traverses the control-flow graph rooted at root in an order suited for
// readable code generation.  Invokes callback at every node in the traversal
// order.  The callback arguments are:
// - the block,
// - the reason we reached the block,
// - if the reason was that block is an unreachable continue or unreachable merge block
//   then the last parameter is the corresponding header block.
void inReadableOrder(Block* root, std::function<void(Block*, ReachReason, Block* header)> callback);

//
// SPIR-V IR Function.
//

class Function {
public:
    Function(Id id, Id resultType, Id functionType, Id firstParam, Module& parent);
    virtual ~Function()
    {
        for (int i = 0; i < (int)parameterInstructions.size(); ++i)
            delete parameterInstructions[i];

        for (int i = 0; i < (int)blocks.size(); ++i)
            delete blocks[i];
    }
    Id getId() const { return functionInstruction.getResultId(); }
    Id getParamId(int p) const { return parameterInstructions[p]->getResultId(); }
    Id getParamType(int p) const { return parameterInstructions[p]->getTypeId(); }

    void addBlock(Block* block) { blocks.push_back(block); }
    void removeBlock(Block* block)
    {
        auto found = find(blocks.begin(), blocks.end(), block);
        assert(found != blocks.end());
        blocks.erase(found);
        delete block;
    }

    Module& getParent() const { return parent; }
    Block* getEntryBlock() const { return blocks.front(); }
    Block* getLastBlock() const { return blocks.back(); }
    const std::vector<Block*>& getBlocks() const { return blocks; }
    void addLocalVariable(std::unique_ptr<Instruction> inst);
    Id getReturnType() const { return functionInstruction.getTypeId(); }
    void setReturnPrecision(Decoration precision)
    {
        if (precision == DecorationRelaxedPrecision)
            reducedPrecisionReturn = true;
    }
    Decoration getReturnPrecision() const
        { return reducedPrecisionReturn ? DecorationRelaxedPrecision : NoPrecision; }

    void setImplicitThis() { implicitThis = true; }
    bool hasImplicitThis() const { return implicitThis; }

    void addParamPrecision(unsigned param, Decoration precision)
    {
        if (precision == DecorationRelaxedPrecision)
            reducedPrecisionParams.insert(param);
    }
    Decoration getParamPrecision(unsigned param) const
    {
        return reducedPrecisionParams.find(param) != reducedPrecisionParams.end() ?
            DecorationRelaxedPrecision : NoPrecision;
    }

    void dump(std::vector<unsigned int>& out) const
    {
        // OpFunction
        functionInstruction.dump(out);

        // OpFunctionParameter
        for (int p = 0; p < (int)parameterInstructions.size(); ++p)
            parameterInstructions[p]->dump(out);

        // Blocks
        inReadableOrder(blocks[0], [&out](const Block* b, ReachReason, Block*) { b->dump(out); });
        Instruction end(0, 0, OpFunctionEnd);
        end.dump(out);
    }

protected:
    Function(const Function&);
    Function& operator=(Function&);

    Module& parent;
    Instruction functionInstruction;
    std::vector<Instruction*> parameterInstructions;
    std::vector<Block*> blocks;
    bool implicitThis;  // true if this is a member function expecting to be passed a 'this' as the first argument
    bool reducedPrecisionReturn;
    std::set<int> reducedPrecisionParams;  // list of parameter indexes that need a relaxed precision arg
};

//
// SPIR-V IR Module.
//

class Module {
public:
    Module() {}
    virtual ~Module()
    {
        // TODO delete things
    }

    void addFunction(Function *fun) { functions.push_back(fun); }

    void mapInstruction(Instruction *instruction)
    {
        spv::Id resultId = instruction->getResultId();
        // map the instruction's result id
        if (resultId >= idToInstruction.size())
            idToInstruction.resize(resultId + 16);
        idToInstruction[resultId] = instruction;
    }

    Instruction* getInstruction(Id id) const { return idToInstruction[id]; }
    const std::vector<Function*>& getFunctions() const { return functions; }
    spv::Id getTypeId(Id resultId) const {
        return idToInstruction[resultId] == nullptr ? NoType : idToInstruction[resultId]->getTypeId();
    }
    StorageClass getStorageClass(Id typeId) const
    {
        assert(idToInstruction[typeId]->getOpCode() == spv::OpTypePointer);
        return (StorageClass)idToInstruction[typeId]->getImmediateOperand(0);
    }

    void dump(std::vector<unsigned int>& out) const
    {
        for (int f = 0; f < (int)functions.size(); ++f)
            functions[f]->dump(out);
    }

protected:
    Module(const Module&);
    std::vector<Function*> functions;

    // map from result id to instruction having that result id
    std::vector<Instruction*> idToInstruction;

    // map from a result id to its type id
};

//
// Implementation (it's here due to circular type definitions).
//

// Add both
// - the OpFunction instruction
// - all the OpFunctionParameter instructions
__inline Function::Function(Id id, Id resultType, Id functionType, Id firstParamId, Module& parent)
    : parent(parent), functionInstruction(id, resultType, OpFunction), implicitThis(false),
      reducedPrecisionReturn(false)
{
    // OpFunction
    functionInstruction.addImmediateOperand(FunctionControlMaskNone);
    functionInstruction.addIdOperand(functionType);
    parent.mapInstruction(&functionInstruction);
    parent.addFunction(this);

    // OpFunctionParameter
    Instruction* typeInst = parent.getInstruction(functionType);
    int numParams = typeInst->getNumOperands() - 1;
    for (int p = 0; p < numParams; ++p) {
        Instruction* param = new Instruction(firstParamId + p, typeInst->getIdOperand(p + 1), OpFunctionParameter);
        parent.mapInstruction(param);
        parameterInstructions.push_back(param);
    }
}

__inline void Function::addLocalVariable(std::unique_ptr<Instruction> inst)
{
    Instruction* raw_instruction = inst.get();
    blocks[0]->addLocalVariable(std::move(inst));
    parent.mapInstruction(raw_instruction);
}

__inline Block::Block(Id id, Function& parent) : parent(parent), unreachable(false)
{
    instructions.push_back(std::unique_ptr<Instruction>(new Instruction(id, NoType, OpLabel)));
    instructions.back()->setBlock(this);
    parent.getParent().mapInstruction(instructions.back().get());
}

__inline void Block::addInstruction(std::unique_ptr<Instruction> inst)
{
    Instruction* raw_instruction = inst.get();
    instructions.push_back(std::move(inst));
    raw_instruction->setBlock(this);
    if (raw_instruction->getResultId())
        parent.getParent().mapInstruction(raw_instruction);
}

}  // end spv namespace

#endif // spvIR_H