gcpukernel.hpp 8.23 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2018-2019 Intel Corporation


#ifndef OPENCV_GAPI_GCPUKERNEL_HPP
#define OPENCV_GAPI_GCPUKERNEL_HPP

#include <functional>
#include <unordered_map>
#include <utility>
#include <vector>

#include <opencv2/core/mat.hpp>
#include <opencv2/gapi/gcommon.hpp>
#include <opencv2/gapi/gkernel.hpp>
#include <opencv2/gapi/garg.hpp>
#include <opencv2/gapi/own/convert.hpp> //to_ocv
#include <opencv2/gapi/util/compiler_hints.hpp> //suppress_unused_warning
#include <opencv2/gapi/util/util.hpp>

// FIXME: namespace scheme for backends?
namespace cv {

namespace gimpl
{
    // Forward-declare an internal class
    class GCPUExecutable;
} // namespace gimpl

namespace gapi
{
namespace cpu
{
    /**
     * \addtogroup gapi_std_backends
     * @{
     *
     * @brief G-API backends available in this OpenCV version
     *
     * G-API backends play a corner stone role in G-API execution
     * stack. Every backend is hardware-oriented and thus can run its
     * kernels efficiently on the target platform.
     *
     * Backends are usually "black boxes" for G-API users -- on the API
     * side, all backends are represented as different objects of the
     * same class cv::gapi::GBackend.
     * User can manipulate with backends by specifying which kernels to use.
     *
     * @sa @ref gapi_hld
     */

    /**
     * @brief Get a reference to CPU (OpenCV) backend.
     *
     * This is the default backend in G-API at the moment, providing
     * broader functional coverage but losing some graph model
     * advantages. Provided mostly for reference and prototyping
     * purposes.
     *
     * @sa gapi_std_backends
     */
    GAPI_EXPORTS cv::gapi::GBackend backend();
    /** @} */
} // namespace cpu
} // namespace gapi

// Represents arguments which are passed to a wrapped CPU function
// FIXME: put into detail?
class GAPI_EXPORTS GCPUContext
{
public:
    // Generic accessor API
    template<typename T>
    const T& inArg(int input) { return m_args.at(input).get<T>(); }

    // Syntax sugar
    const cv::gapi::own::Mat&   inMat(int input);
    cv::gapi::own::Mat&         outMatR(int output); // FIXME: Avoid cv::gapi::own::Mat m = ctx.outMatR()

    const cv::gapi::own::Scalar& inVal(int input);
    cv::gapi::own::Scalar& outValR(int output); // FIXME: Avoid cv::gapi::own::Scalar s = ctx.outValR()
    template<typename T> std::vector<T>& outVecR(int output) // FIXME: the same issue
    {
        return outVecRef(output).wref<T>();
    }

protected:
    detail::VectorRef& outVecRef(int output);

    std::vector<GArg> m_args;

    //FIXME: avoid conversion of arguments from internal representaion to OpenCV one on each call
    //to OCV kernel. (This can be achieved by a two single time conversions in GCPUExecutable::run,
    //once on enter for input and output arguments, and once before return for output arguments only
    std::unordered_map<std::size_t, GRunArgP> m_results;

    friend class gimpl::GCPUExecutable;
};

class GAPI_EXPORTS GCPUKernel
{
public:
    // This function is kernel's execution entry point (does the processing work)
    using F = std::function<void(GCPUContext &)>;

    GCPUKernel();
    explicit GCPUKernel(const F& f);

    void apply(GCPUContext &ctx);

protected:
    F m_f;
};

// FIXME: This is an ugly ad-hoc imlpementation. TODO: refactor

namespace detail
{
template<class T> struct get_in;
template<> struct get_in<cv::GMat>
{
    static cv::Mat    get(GCPUContext &ctx, int idx) { return to_ocv(ctx.inMat(idx)); }
};
template<> struct get_in<cv::GMatP>
{
    static cv::Mat    get(GCPUContext &ctx, int idx) { return get_in<cv::GMat>::get(ctx, idx); }
};
template<> struct get_in<cv::GScalar>
{
    static cv::Scalar get(GCPUContext &ctx, int idx) { return to_ocv(ctx.inVal(idx)); }
};
template<typename U> struct get_in<cv::GArray<U> >
{
    static const std::vector<U>& get(GCPUContext &ctx, int idx) { return ctx.inArg<VectorRef>(idx).rref<U>(); }
};
template<class T> struct get_in
{
    static T get(GCPUContext &ctx, int idx) { return ctx.inArg<T>(idx); }
};

struct tracked_cv_mat{
    tracked_cv_mat(cv::gapi::own::Mat& m) : r{to_ocv(m)}, original_data{m.data} {}
    cv::Mat r;
    uchar* original_data;

    operator cv::Mat& (){ return r;}
    void validate() const{
        if (r.data != original_data)
        {
            util::throw_error
                (std::logic_error
                 ("OpenCV kernel output parameter was reallocated. \n"
                  "Incorrect meta data was provided ?"));
        }
    }
};

struct scalar_wrapper
{
    scalar_wrapper(cv::gapi::own::Scalar& s) : m_s{cv::gapi::own::to_ocv(s)}, m_org_s(s) {};
    operator cv::Scalar& () { return m_s; }
    void writeBack() const  { m_org_s = to_own(m_s); }

    cv::Scalar m_s;
    cv::gapi::own::Scalar& m_org_s;
};

template<typename... Outputs>
void postprocess(Outputs&... outs)
{
    struct
    {
        void operator()(tracked_cv_mat* bm) { bm->validate();  }
        void operator()(scalar_wrapper* sw) { sw->writeBack(); }
        void operator()(...)                {                  }

    } validate;
    //dummy array to unfold parameter pack
    int dummy[] = { 0, (validate(&outs), 0)... };
    cv::util::suppress_unused_warning(dummy);
}

template<class T> struct get_out;
template<> struct get_out<cv::GMat>
{
    static tracked_cv_mat get(GCPUContext &ctx, int idx)
    {
        auto& r = ctx.outMatR(idx);
        return {r};
    }
};
template<> struct get_out<cv::GMatP>
{
    static tracked_cv_mat get(GCPUContext &ctx, int idx)
    {
        return get_out<cv::GMat>::get(ctx, idx);
    }
};
template<> struct get_out<cv::GScalar>
{
    static scalar_wrapper get(GCPUContext &ctx, int idx)
    {
        auto& s = ctx.outValR(idx);
        return {s};
    }
};
template<typename U> struct get_out<cv::GArray<U>>
{
    static std::vector<U>& get(GCPUContext &ctx, int idx)
    {
        return ctx.outVecR<U>(idx);
    }
};

template<typename, typename, typename>
struct OCVCallHelper;

// FIXME: probably can be simplified with std::apply or analogue.
template<typename Impl, typename... Ins, typename... Outs>
struct OCVCallHelper<Impl, std::tuple<Ins...>, std::tuple<Outs...> >
{
    template<typename... Inputs>
    struct call_and_postprocess
    {
        template<typename... Outputs>
        static void call(Inputs&&... ins, Outputs&&... outs)
        {
            //not using a std::forward on outs is deliberate in order to
            //cause compilation error, by tring to bind rvalue references to lvalue references
            Impl::run(std::forward<Inputs>(ins)..., outs...);

            postprocess(outs...);
        }
    };

    template<int... IIs, int... OIs>
    static void call_impl(GCPUContext &ctx, detail::Seq<IIs...>, detail::Seq<OIs...>)
    {
        //Make sure that OpenCV kernels do not reallocate memory for output parameters
        //by comparing it's state (data ptr) before and after the call.
        //This is done by converting each output Mat into tracked_cv_mat object, and binding
        //them to parameters of ad-hoc function
        //Convert own::Scalar to cv::Scalar before call kernel and run kernel
        //convert cv::Scalar to own::Scalar after call kernel and write back results
        call_and_postprocess<decltype(get_in<Ins>::get(ctx, IIs))...>::call(get_in<Ins>::get(ctx, IIs)..., get_out<Outs>::get(ctx, OIs)...);
    }

    static void call(GCPUContext &ctx)
    {
        call_impl(ctx,
                  typename detail::MkSeq<sizeof...(Ins)>::type(),
                  typename detail::MkSeq<sizeof...(Outs)>::type());
    }
};

} // namespace detail

template<class Impl, class K>
class GCPUKernelImpl: public cv::detail::OCVCallHelper<Impl, typename K::InArgs, typename K::OutArgs>,
                      public cv::detail::KernelTag
{
    using P = detail::OCVCallHelper<Impl, typename K::InArgs, typename K::OutArgs>;

public:
    using API = K;

    static cv::gapi::GBackend backend()  { return cv::gapi::cpu::backend(); }
    static cv::GCPUKernel     kernel()   { return GCPUKernel(&P::call);     }
};

#define GAPI_OCV_KERNEL(Name, API) struct Name: public cv::GCPUKernelImpl<Name, API>

} // namespace cv

#endif // OPENCV_GAPI_GCPUKERNEL_HPP