SymbolTable.h 33 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885
//
// Copyright (C) 2002-2005  3Dlabs Inc. Ltd.
// Copyright (C) 2013 LunarG, Inc.
// Copyright (C) 2015-2018 Google, Inc.
//
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
//
//    Redistributions of source code must retain the above copyright
//    notice, this list of conditions and the following disclaimer.
//
//    Redistributions in binary form must reproduce the above
//    copyright notice, this list of conditions and the following
//    disclaimer in the documentation and/or other materials provided
//    with the distribution.
//
//    Neither the name of 3Dlabs Inc. Ltd. nor the names of its
//    contributors may be used to endorse or promote products derived
//    from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
// FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
// COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
// INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
// BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
// LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
// LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
// ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//

#ifndef _SYMBOL_TABLE_INCLUDED_
#define _SYMBOL_TABLE_INCLUDED_

//
// Symbol table for parsing.  Has these design characteristics:
//
// * Same symbol table can be used to compile many shaders, to preserve
//   effort of creating and loading with the large numbers of built-in
//   symbols.
//
// -->  This requires a copy mechanism, so initial pools used to create
//   the shared information can be popped.  Done through "clone"
//   methods.
//
// * Name mangling will be used to give each function a unique name
//   so that symbol table lookups are never ambiguous.  This allows
//   a simpler symbol table structure.
//
// * Pushing and popping of scope, so symbol table will really be a stack
//   of symbol tables.  Searched from the top, with new inserts going into
//   the top.
//
// * Constants:  Compile time constant symbols will keep their values
//   in the symbol table.  The parser can substitute constants at parse
//   time, including doing constant folding and constant propagation.
//
// * No temporaries:  Temporaries made from operations (+, --, .xy, etc.)
//   are tracked in the intermediate representation, not the symbol table.
//

#include "../Include/Common.h"
#include "../Include/intermediate.h"
#include "../Include/InfoSink.h"

namespace glslang {

//
// Symbol base class.  (Can build functions or variables out of these...)
//

class TVariable;
class TFunction;
class TAnonMember;

typedef TVector<const char*> TExtensionList;

class TSymbol {
public:
    POOL_ALLOCATOR_NEW_DELETE(GetThreadPoolAllocator())
    explicit TSymbol(const TString *n) :  name(n), extensions(0), writable(true) { }
    virtual TSymbol* clone() const = 0;
    virtual ~TSymbol() { }  // rely on all symbol owned memory coming from the pool

    virtual const TString& getName() const { return *name; }
    virtual void changeName(const TString* newName) { name = newName; }
    virtual void addPrefix(const char* prefix)
    {
        TString newName(prefix);
        newName.append(*name);
        changeName(NewPoolTString(newName.c_str()));
    }
    virtual const TString& getMangledName() const { return getName(); }
    virtual TFunction* getAsFunction() { return 0; }
    virtual const TFunction* getAsFunction() const { return 0; }
    virtual TVariable* getAsVariable() { return 0; }
    virtual const TVariable* getAsVariable() const { return 0; }
    virtual const TAnonMember* getAsAnonMember() const { return 0; }
    virtual const TType& getType() const = 0;
    virtual TType& getWritableType() = 0;
    virtual void setUniqueId(int id) { uniqueId = id; }
    virtual int getUniqueId() const { return uniqueId; }
    virtual void setExtensions(int numExts, const char* const exts[])
    {
        assert(extensions == 0);
        assert(numExts > 0);
        extensions = NewPoolObject(extensions);
        for (int e = 0; e < numExts; ++e)
            extensions->push_back(exts[e]);
    }
    virtual int getNumExtensions() const { return extensions == nullptr ? 0 : (int)extensions->size(); }
    virtual const char** getExtensions() const { return extensions->data(); }

#if !defined(GLSLANG_WEB) && !defined(GLSLANG_ANGLE)
    virtual void dump(TInfoSink& infoSink, bool complete = false) const = 0;
    void dumpExtensions(TInfoSink& infoSink) const;
#endif

    virtual bool isReadOnly() const { return ! writable; }
    virtual void makeReadOnly() { writable = false; }

protected:
    explicit TSymbol(const TSymbol&);
    TSymbol& operator=(const TSymbol&);

    const TString *name;
    unsigned int uniqueId;      // For cross-scope comparing during code generation

    // For tracking what extensions must be present
    // (don't use if correct version/profile is present).
    TExtensionList* extensions; // an array of pointers to existing constant char strings

    //
    // N.B.: Non-const functions that will be generally used should assert on this,
    // to avoid overwriting shared symbol-table information.
    //
    bool writable;
};

//
// Variable class, meaning a symbol that's not a function.
//
// There could be a separate class hierarchy for Constant variables;
// Only one of int, bool, or float, (or none) is correct for
// any particular use, but it's easy to do this way, and doesn't
// seem worth having separate classes, and "getConst" can't simply return
// different values for different types polymorphically, so this is
// just simple and pragmatic.
//
class TVariable : public TSymbol {
public:
    TVariable(const TString *name, const TType& t, bool uT = false )
        : TSymbol(name),
          userType(uT),
          constSubtree(nullptr),
          memberExtensions(nullptr),
          anonId(-1)
        { type.shallowCopy(t); }
    virtual TVariable* clone() const;
    virtual ~TVariable() { }

    virtual TVariable* getAsVariable() { return this; }
    virtual const TVariable* getAsVariable() const { return this; }
    virtual const TType& getType() const { return type; }
    virtual TType& getWritableType() { assert(writable); return type; }
    virtual bool isUserType() const { return userType; }
    virtual const TConstUnionArray& getConstArray() const { return constArray; }
    virtual TConstUnionArray& getWritableConstArray() { assert(writable); return constArray; }
    virtual void setConstArray(const TConstUnionArray& array) { constArray = array; }
    virtual void setConstSubtree(TIntermTyped* subtree) { constSubtree = subtree; }
    virtual TIntermTyped* getConstSubtree() const { return constSubtree; }
    virtual void setAnonId(int i) { anonId = i; }
    virtual int getAnonId() const { return anonId; }

    virtual void setMemberExtensions(int member, int numExts, const char* const exts[])
    {
        assert(type.isStruct());
        assert(numExts > 0);
        if (memberExtensions == nullptr) {
            memberExtensions = NewPoolObject(memberExtensions);
            memberExtensions->resize(type.getStruct()->size());
        }
        for (int e = 0; e < numExts; ++e)
            (*memberExtensions)[member].push_back(exts[e]);
    }
    virtual bool hasMemberExtensions() const { return memberExtensions != nullptr; }
    virtual int getNumMemberExtensions(int member) const 
    {
        return memberExtensions == nullptr ? 0 : (int)(*memberExtensions)[member].size();
    }
    virtual const char** getMemberExtensions(int member) const { return (*memberExtensions)[member].data(); }

#if !defined(GLSLANG_WEB) && !defined(GLSLANG_ANGLE)
    virtual void dump(TInfoSink& infoSink, bool complete = false) const;
#endif

protected:
    explicit TVariable(const TVariable&);
    TVariable& operator=(const TVariable&);

    TType type;
    bool userType;

    // we are assuming that Pool Allocator will free the memory allocated to unionArray
    // when this object is destroyed

    TConstUnionArray constArray;               // for compile-time constant value
    TIntermTyped* constSubtree;                // for specialization constant computation
    TVector<TExtensionList>* memberExtensions; // per-member extension list, allocated only when needed
    int anonId; // the ID used for anonymous blocks: TODO: see if uniqueId could serve a dual purpose
};

//
// The function sub-class of symbols and the parser will need to
// share this definition of a function parameter.
//
struct TParameter {
    TString *name;
    TType* type;
    TIntermTyped* defaultValue;
    void copyParam(const TParameter& param)
    {
        if (param.name)
            name = NewPoolTString(param.name->c_str());
        else
            name = 0;
        type = param.type->clone();
        defaultValue = param.defaultValue;
    }
    TBuiltInVariable getDeclaredBuiltIn() const { return type->getQualifier().declaredBuiltIn; }
};

//
// The function sub-class of a symbol.
//
class TFunction : public TSymbol {
public:
    explicit TFunction(TOperator o) :
        TSymbol(0),
        op(o),
        defined(false), prototyped(false), implicitThis(false), illegalImplicitThis(false), defaultParamCount(0) { }
    TFunction(const TString *name, const TType& retType, TOperator tOp = EOpNull) :
        TSymbol(name),
        mangledName(*name + '('),
        op(tOp),
        defined(false), prototyped(false), implicitThis(false), illegalImplicitThis(false), defaultParamCount(0)
    {
        returnType.shallowCopy(retType);
        declaredBuiltIn = retType.getQualifier().builtIn;
    }
    virtual TFunction* clone() const override;
    virtual ~TFunction();

    virtual TFunction* getAsFunction() override { return this; }
    virtual const TFunction* getAsFunction() const override { return this; }

    // Install 'p' as the (non-'this') last parameter.
    // Non-'this' parameters are reflected in both the list of parameters and the
    // mangled name.
    virtual void addParameter(TParameter& p)
    {
        assert(writable);
        parameters.push_back(p);
        p.type->appendMangledName(mangledName);

        if (p.defaultValue != nullptr)
            defaultParamCount++;
    }

    // Install 'this' as the first parameter.
    // 'this' is reflected in the list of parameters, but not the mangled name.
    virtual void addThisParameter(TType& type, const char* name)
    {
        TParameter p = { NewPoolTString(name), new TType, nullptr };
        p.type->shallowCopy(type);
        parameters.insert(parameters.begin(), p);
    }

    virtual void addPrefix(const char* prefix) override
    {
        TSymbol::addPrefix(prefix);
        mangledName.insert(0, prefix);
    }

    virtual void removePrefix(const TString& prefix)
    {
        assert(mangledName.compare(0, prefix.size(), prefix) == 0);
        mangledName.erase(0, prefix.size());
    }

    virtual const TString& getMangledName() const override { return mangledName; }
    virtual const TType& getType() const override { return returnType; }
    virtual TBuiltInVariable getDeclaredBuiltInType() const { return declaredBuiltIn; }
    virtual TType& getWritableType() override { return returnType; }
    virtual void relateToOperator(TOperator o) { assert(writable); op = o; }
    virtual TOperator getBuiltInOp() const { return op; }
    virtual void setDefined() { assert(writable); defined = true; }
    virtual bool isDefined() const { return defined; }
    virtual void setPrototyped() { assert(writable); prototyped = true; }
    virtual bool isPrototyped() const { return prototyped; }
    virtual void setImplicitThis() { assert(writable); implicitThis = true; }
    virtual bool hasImplicitThis() const { return implicitThis; }
    virtual void setIllegalImplicitThis() { assert(writable); illegalImplicitThis = true; }
    virtual bool hasIllegalImplicitThis() const { return illegalImplicitThis; }

    // Return total number of parameters
    virtual int getParamCount() const { return static_cast<int>(parameters.size()); }
    // Return number of parameters with default values.
    virtual int getDefaultParamCount() const { return defaultParamCount; }
    // Return number of fixed parameters (without default values)
    virtual int getFixedParamCount() const { return getParamCount() - getDefaultParamCount(); }

    virtual TParameter& operator[](int i) { assert(writable); return parameters[i]; }
    virtual const TParameter& operator[](int i) const { return parameters[i]; }

#if !defined(GLSLANG_WEB) && !defined(GLSLANG_ANGLE)
    virtual void dump(TInfoSink& infoSink, bool complete = false) const override;
#endif

protected:
    explicit TFunction(const TFunction&);
    TFunction& operator=(const TFunction&);

    typedef TVector<TParameter> TParamList;
    TParamList parameters;
    TType returnType;
    TBuiltInVariable declaredBuiltIn;

    TString mangledName;
    TOperator op;
    bool defined;
    bool prototyped;
    bool implicitThis;         // True if this function is allowed to see all members of 'this'
    bool illegalImplicitThis;  // True if this function is not supposed to have access to dynamic members of 'this',
                               // even if it finds member variables in the symbol table.
                               // This is important for a static member function that has member variables in scope,
                               // but is not allowed to use them, or see hidden symbols instead.
    int  defaultParamCount;
};

//
// Members of anonymous blocks are a kind of TSymbol.  They are not hidden in
// the symbol table behind a container; rather they are visible and point to
// their anonymous container.  (The anonymous container is found through the
// member, not the other way around.)
//
class TAnonMember : public TSymbol {
public:
    TAnonMember(const TString* n, unsigned int m, TVariable& a, int an) : TSymbol(n), anonContainer(a), memberNumber(m), anonId(an) { }
    virtual TAnonMember* clone() const override;
    virtual ~TAnonMember() { }

    virtual const TAnonMember* getAsAnonMember() const override { return this; }
    virtual const TVariable& getAnonContainer() const { return anonContainer; }
    virtual unsigned int getMemberNumber() const { return memberNumber; }

    virtual const TType& getType() const override
    {
        const TTypeList& types = *anonContainer.getType().getStruct();
        return *types[memberNumber].type;
    }

    virtual TType& getWritableType() override
    {
        assert(writable);
        const TTypeList& types = *anonContainer.getType().getStruct();
        return *types[memberNumber].type;
    }

    virtual void setExtensions(int numExts, const char* const exts[]) override
    {
        anonContainer.setMemberExtensions(memberNumber, numExts, exts);
    }
    virtual int getNumExtensions() const override { return anonContainer.getNumMemberExtensions(memberNumber); }
    virtual const char** getExtensions() const override { return anonContainer.getMemberExtensions(memberNumber); }

    virtual int getAnonId() const { return anonId; }
#if !defined(GLSLANG_WEB) && !defined(GLSLANG_ANGLE)
    virtual void dump(TInfoSink& infoSink, bool complete = false) const override;
#endif

protected:
    explicit TAnonMember(const TAnonMember&);
    TAnonMember& operator=(const TAnonMember&);

    TVariable& anonContainer;
    unsigned int memberNumber;
    int anonId;
};

class TSymbolTableLevel {
public:
    POOL_ALLOCATOR_NEW_DELETE(GetThreadPoolAllocator())
    TSymbolTableLevel() : defaultPrecision(0), anonId(0), thisLevel(false) { }
    ~TSymbolTableLevel();

    bool insert(TSymbol& symbol, bool separateNameSpaces)
    {
        //
        // returning true means symbol was added to the table with no semantic errors
        //
        const TString& name = symbol.getName();
        if (name == "") {
            symbol.getAsVariable()->setAnonId(anonId++);
            // An empty name means an anonymous container, exposing its members to the external scope.
            // Give it a name and insert its members in the symbol table, pointing to the container.
            char buf[20];
            snprintf(buf, 20, "%s%d", AnonymousPrefix, symbol.getAsVariable()->getAnonId());
            symbol.changeName(NewPoolTString(buf));

            return insertAnonymousMembers(symbol, 0);
        } else {
            // Check for redefinition errors:
            // - STL itself will tell us if there is a direct name collision, with name mangling, at this level
            // - additionally, check for function-redefining-variable name collisions
            const TString& insertName = symbol.getMangledName();
            if (symbol.getAsFunction()) {
                // make sure there isn't a variable of this name
                if (! separateNameSpaces && level.find(name) != level.end())
                    return false;

                // insert, and whatever happens is okay
                level.insert(tLevelPair(insertName, &symbol));

                return true;
            } else
                return level.insert(tLevelPair(insertName, &symbol)).second;
        }
    }

    // Add more members to an already inserted aggregate object
    bool amend(TSymbol& symbol, int firstNewMember)
    {
        // See insert() for comments on basic explanation of insert.
        // This operates similarly, but more simply.
        // Only supporting amend of anonymous blocks so far.
        if (IsAnonymous(symbol.getName()))
            return insertAnonymousMembers(symbol, firstNewMember);
        else
            return false;
    }

    bool insertAnonymousMembers(TSymbol& symbol, int firstMember)
    {
        const TTypeList& types = *symbol.getAsVariable()->getType().getStruct();
        for (unsigned int m = firstMember; m < types.size(); ++m) {
            TAnonMember* member = new TAnonMember(&types[m].type->getFieldName(), m, *symbol.getAsVariable(), symbol.getAsVariable()->getAnonId());
            if (! level.insert(tLevelPair(member->getMangledName(), member)).second)
                return false;
        }

        return true;
    }

    TSymbol* find(const TString& name) const
    {
        tLevel::const_iterator it = level.find(name);
        if (it == level.end())
            return 0;
        else
            return (*it).second;
    }

    void findFunctionNameList(const TString& name, TVector<const TFunction*>& list)
    {
        size_t parenAt = name.find_first_of('(');
        TString base(name, 0, parenAt + 1);

        tLevel::const_iterator begin = level.lower_bound(base);
        base[parenAt] = ')';  // assume ')' is lexically after '('
        tLevel::const_iterator end = level.upper_bound(base);
        for (tLevel::const_iterator it = begin; it != end; ++it)
            list.push_back(it->second->getAsFunction());
    }

    // See if there is already a function in the table having the given non-function-style name.
    bool hasFunctionName(const TString& name) const
    {
        tLevel::const_iterator candidate = level.lower_bound(name);
        if (candidate != level.end()) {
            const TString& candidateName = (*candidate).first;
            TString::size_type parenAt = candidateName.find_first_of('(');
            if (parenAt != candidateName.npos && candidateName.compare(0, parenAt, name) == 0)

                return true;
        }

        return false;
    }

    // See if there is a variable at this level having the given non-function-style name.
    // Return true if name is found, and set variable to true if the name was a variable.
    bool findFunctionVariableName(const TString& name, bool& variable) const
    {
        tLevel::const_iterator candidate = level.lower_bound(name);
        if (candidate != level.end()) {
            const TString& candidateName = (*candidate).first;
            TString::size_type parenAt = candidateName.find_first_of('(');
            if (parenAt == candidateName.npos) {
                // not a mangled name
                if (candidateName == name) {
                    // found a variable name match
                    variable = true;
                    return true;
                }
            } else {
                // a mangled name
                if (candidateName.compare(0, parenAt, name) == 0) {
                    // found a function name match
                    variable = false;
                    return true;
                }
            }
        }

        return false;
    }

    // Use this to do a lazy 'push' of precision defaults the first time
    // a precision statement is seen in a new scope.  Leave it at 0 for
    // when no push was needed.  Thus, it is not the current defaults,
    // it is what to restore the defaults to when popping a level.
    void setPreviousDefaultPrecisions(const TPrecisionQualifier *p)
    {
        // can call multiple times at one scope, will only latch on first call,
        // as we're tracking the previous scope's values, not the current values
        if (defaultPrecision != 0)
            return;

        defaultPrecision = new TPrecisionQualifier[EbtNumTypes];
        for (int t = 0; t < EbtNumTypes; ++t)
            defaultPrecision[t] = p[t];
    }

    void getPreviousDefaultPrecisions(TPrecisionQualifier *p)
    {
        // can be called for table level pops that didn't set the
        // defaults
        if (defaultPrecision == 0 || p == 0)
            return;

        for (int t = 0; t < EbtNumTypes; ++t)
            p[t] = defaultPrecision[t];
    }

    void relateToOperator(const char* name, TOperator op);
    void setFunctionExtensions(const char* name, int num, const char* const extensions[]);
#if !defined(GLSLANG_WEB) && !defined(GLSLANG_ANGLE)
    void dump(TInfoSink& infoSink, bool complete = false) const;
#endif
    TSymbolTableLevel* clone() const;
    void readOnly();

    void setThisLevel() { thisLevel = true; }
    bool isThisLevel() const { return thisLevel; }

protected:
    explicit TSymbolTableLevel(TSymbolTableLevel&);
    TSymbolTableLevel& operator=(TSymbolTableLevel&);

    typedef std::map<TString, TSymbol*, std::less<TString>, pool_allocator<std::pair<const TString, TSymbol*> > > tLevel;
    typedef const tLevel::value_type tLevelPair;
    typedef std::pair<tLevel::iterator, bool> tInsertResult;

    tLevel level;  // named mappings
    TPrecisionQualifier *defaultPrecision;
    int anonId;
    bool thisLevel;  // True if this level of the symbol table is a structure scope containing member function
                     // that are supposed to see anonymous access to member variables.
};

class TSymbolTable {
public:
    TSymbolTable() : uniqueId(0), noBuiltInRedeclarations(false), separateNameSpaces(false), adoptedLevels(0)
    {
        //
        // This symbol table cannot be used until push() is called.
        //
    }
    ~TSymbolTable()
    {
        // this can be called explicitly; safest to code it so it can be called multiple times

        // don't deallocate levels passed in from elsewhere
        while (table.size() > adoptedLevels)
            pop(0);
    }

    void adoptLevels(TSymbolTable& symTable)
    {
        for (unsigned int level = 0; level < symTable.table.size(); ++level) {
            table.push_back(symTable.table[level]);
            ++adoptedLevels;
        }
        uniqueId = symTable.uniqueId;
        noBuiltInRedeclarations = symTable.noBuiltInRedeclarations;
        separateNameSpaces = symTable.separateNameSpaces;
    }

    //
    // While level adopting is generic, the methods below enact a the following
    // convention for levels:
    //   0: common built-ins shared across all stages, all compiles, only one copy for all symbol tables
    //   1: per-stage built-ins, shared across all compiles, but a different copy per stage
    //   2: built-ins specific to a compile, like resources that are context-dependent, or redeclared built-ins
    //   3: user-shader globals
    //
protected:
    static const int globalLevel = 3;
    bool isSharedLevel(int level)  { return level <= 1; }              // exclude all per-compile levels
    bool isBuiltInLevel(int level) { return level <= 2; }              // exclude user globals
    bool isGlobalLevel(int level)  { return level <= globalLevel; }    // include user globals
public:
    bool isEmpty() { return table.size() == 0; }
    bool atBuiltInLevel() { return isBuiltInLevel(currentLevel()); }
    bool atGlobalLevel()  { return isGlobalLevel(currentLevel()); }

    void setNoBuiltInRedeclarations() { noBuiltInRedeclarations = true; }
    void setSeparateNameSpaces() { separateNameSpaces = true; }

    void push()
    {
        table.push_back(new TSymbolTableLevel);
    }

    // Make a new symbol-table level to represent the scope introduced by a structure
    // containing member functions, such that the member functions can find anonymous
    // references to member variables.
    //
    // 'thisSymbol' should have a name of "" to trigger anonymous structure-member
    // symbol finds.
    void pushThis(TSymbol& thisSymbol)
    {
        assert(thisSymbol.getName().size() == 0);
        table.push_back(new TSymbolTableLevel);
        table.back()->setThisLevel();
        insert(thisSymbol);
    }

    void pop(TPrecisionQualifier *p)
    {
        table[currentLevel()]->getPreviousDefaultPrecisions(p);
        delete table.back();
        table.pop_back();
    }

    //
    // Insert a visible symbol into the symbol table so it can
    // be found later by name.
    //
    // Returns false if the was a name collision.
    //
    bool insert(TSymbol& symbol)
    {
        symbol.setUniqueId(++uniqueId);

        // make sure there isn't a function of this variable name
        if (! separateNameSpaces && ! symbol.getAsFunction() && table[currentLevel()]->hasFunctionName(symbol.getName()))
            return false;

        // check for not overloading or redefining a built-in function
        if (noBuiltInRedeclarations) {
            if (atGlobalLevel() && currentLevel() > 0) {
                if (table[0]->hasFunctionName(symbol.getName()))
                    return false;
                if (currentLevel() > 1 && table[1]->hasFunctionName(symbol.getName()))
                    return false;
            }
        }

        return table[currentLevel()]->insert(symbol, separateNameSpaces);
    }

    // Add more members to an already inserted aggregate object
    bool amend(TSymbol& symbol, int firstNewMember)
    {
        // See insert() for comments on basic explanation of insert.
        // This operates similarly, but more simply.
        return table[currentLevel()]->amend(symbol, firstNewMember);
    }

    //
    // To allocate an internal temporary, which will need to be uniquely
    // identified by the consumer of the AST, but never need to
    // found by doing a symbol table search by name, hence allowed an
    // arbitrary name in the symbol with no worry of collision.
    //
    void makeInternalVariable(TSymbol& symbol)
    {
        symbol.setUniqueId(++uniqueId);
    }

    //
    // Copy a variable or anonymous member's structure from a shared level so that
    // it can be added (soon after return) to the symbol table where it can be
    // modified without impacting other users of the shared table.
    //
    TSymbol* copyUpDeferredInsert(TSymbol* shared)
    {
        if (shared->getAsVariable()) {
            TSymbol* copy = shared->clone();
            copy->setUniqueId(shared->getUniqueId());
            return copy;
        } else {
            const TAnonMember* anon = shared->getAsAnonMember();
            assert(anon);
            TVariable* container = anon->getAnonContainer().clone();
            container->changeName(NewPoolTString(""));
            container->setUniqueId(anon->getAnonContainer().getUniqueId());
            return container;
        }
    }

    TSymbol* copyUp(TSymbol* shared)
    {
        TSymbol* copy = copyUpDeferredInsert(shared);
        table[globalLevel]->insert(*copy, separateNameSpaces);
        if (shared->getAsVariable())
            return copy;
        else {
            // return the copy of the anonymous member
            return table[globalLevel]->find(shared->getName());
        }
    }

    // Normal find of a symbol, that can optionally say whether the symbol was found
    // at a built-in level or the current top-scope level.
    TSymbol* find(const TString& name, bool* builtIn = 0, bool* currentScope = 0, int* thisDepthP = 0)
    {
        int level = currentLevel();
        TSymbol* symbol;
        int thisDepth = 0;
        do {
            if (table[level]->isThisLevel())
                ++thisDepth;
            symbol = table[level]->find(name);
            --level;
        } while (symbol == nullptr && level >= 0);
        level++;
        if (builtIn)
            *builtIn = isBuiltInLevel(level);
        if (currentScope)
            *currentScope = isGlobalLevel(currentLevel()) || level == currentLevel();  // consider shared levels as "current scope" WRT user globals
        if (thisDepthP != nullptr) {
            if (! table[level]->isThisLevel())
                thisDepth = 0;
            *thisDepthP = thisDepth;
        }

        return symbol;
    }

    // Find of a symbol that returns how many layers deep of nested
    // structures-with-member-functions ('this' scopes) deep the symbol was
    // found in.
    TSymbol* find(const TString& name, int& thisDepth)
    {
        int level = currentLevel();
        TSymbol* symbol;
        thisDepth = 0;
        do {
            if (table[level]->isThisLevel())
                ++thisDepth;
            symbol = table[level]->find(name);
            --level;
        } while (symbol == 0 && level >= 0);

        if (! table[level + 1]->isThisLevel())
            thisDepth = 0;

        return symbol;
    }

    bool isFunctionNameVariable(const TString& name) const
    {
        if (separateNameSpaces)
            return false;

        int level = currentLevel();
        do {
            bool variable;
            bool found = table[level]->findFunctionVariableName(name, variable);
            if (found)
                return variable;
            --level;
        } while (level >= 0);

        return false;
    }

    void findFunctionNameList(const TString& name, TVector<const TFunction*>& list, bool& builtIn)
    {
        // For user levels, return the set found in the first scope with a match
        builtIn = false;
        int level = currentLevel();
        do {
            table[level]->findFunctionNameList(name, list);
            --level;
        } while (list.empty() && level >= globalLevel);

        if (! list.empty())
            return;

        // Gather across all built-in levels; they don't hide each other
        builtIn = true;
        do {
            table[level]->findFunctionNameList(name, list);
            --level;
        } while (level >= 0);
    }

    void relateToOperator(const char* name, TOperator op)
    {
        for (unsigned int level = 0; level < table.size(); ++level)
            table[level]->relateToOperator(name, op);
    }

    void setFunctionExtensions(const char* name, int num, const char* const extensions[])
    {
        for (unsigned int level = 0; level < table.size(); ++level)
            table[level]->setFunctionExtensions(name, num, extensions);
    }

    void setVariableExtensions(const char* name, int numExts, const char* const extensions[])
    {
        TSymbol* symbol = find(TString(name));
        if (symbol == nullptr)
            return;

        symbol->setExtensions(numExts, extensions);
    }

    void setVariableExtensions(const char* blockName, const char* name, int numExts, const char* const extensions[])
    {
        TSymbol* symbol = find(TString(blockName));
        if (symbol == nullptr)
            return;
        TVariable* variable = symbol->getAsVariable();
        assert(variable != nullptr);

        const TTypeList& structure = *variable->getAsVariable()->getType().getStruct();
        for (int member = 0; member < (int)structure.size(); ++member) {
            if (structure[member].type->getFieldName().compare(name) == 0) {
                variable->setMemberExtensions(member, numExts, extensions);
                return;
            }
        }
    }

    int getMaxSymbolId() { return uniqueId; }
#if !defined(GLSLANG_WEB) && !defined(GLSLANG_ANGLE)
    void dump(TInfoSink& infoSink, bool complete = false) const;
#endif
    void copyTable(const TSymbolTable& copyOf);

    void setPreviousDefaultPrecisions(TPrecisionQualifier *p) { table[currentLevel()]->setPreviousDefaultPrecisions(p); }

    void readOnly()
    {
        for (unsigned int level = 0; level < table.size(); ++level)
            table[level]->readOnly();
    }

protected:
    TSymbolTable(TSymbolTable&);
    TSymbolTable& operator=(TSymbolTableLevel&);

    int currentLevel() const { return static_cast<int>(table.size()) - 1; }

    std::vector<TSymbolTableLevel*> table;
    int uniqueId;     // for unique identification in code generation
    bool noBuiltInRedeclarations;
    bool separateNameSpaces;
    unsigned int adoptedLevels;
};

} // end namespace glslang

#endif // _SYMBOL_TABLE_INCLUDED_