matx.hpp 45.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                          License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#ifndef OPENCV_CORE_MATX_HPP
#define OPENCV_CORE_MATX_HPP

#ifndef __cplusplus
#  error matx.hpp header must be compiled as C++
#endif

#include "opencv2/core/cvdef.h"
#include "opencv2/core/base.hpp"
#include "opencv2/core/traits.hpp"
#include "opencv2/core/saturate.hpp"

#include <initializer_list>

namespace cv
{

//! @addtogroup core_basic
//! @{

////////////////////////////// Small Matrix ///////////////////////////

//! @cond IGNORED
// FIXIT Remove this (especially CV_EXPORTS modifier)
struct CV_EXPORTS Matx_AddOp { Matx_AddOp() {} Matx_AddOp(const Matx_AddOp&) {} };
struct CV_EXPORTS Matx_SubOp { Matx_SubOp() {} Matx_SubOp(const Matx_SubOp&) {} };
struct CV_EXPORTS Matx_ScaleOp { Matx_ScaleOp() {} Matx_ScaleOp(const Matx_ScaleOp&) {} };
struct CV_EXPORTS Matx_MulOp { Matx_MulOp() {} Matx_MulOp(const Matx_MulOp&) {} };
struct CV_EXPORTS Matx_DivOp { Matx_DivOp() {} Matx_DivOp(const Matx_DivOp&) {} };
struct CV_EXPORTS Matx_MatMulOp { Matx_MatMulOp() {} Matx_MatMulOp(const Matx_MatMulOp&) {} };
struct CV_EXPORTS Matx_TOp { Matx_TOp() {} Matx_TOp(const Matx_TOp&) {} };
//! @endcond

/** @brief Template class for small matrices whose type and size are known at compilation time

If you need a more flexible type, use Mat . The elements of the matrix M are accessible using the
M(i,j) notation. Most of the common matrix operations (see also @ref MatrixExpressions ) are
available. To do an operation on Matx that is not implemented, you can easily convert the matrix to
Mat and backwards:
@code{.cpp}
    Matx33f m(1, 2, 3,
              4, 5, 6,
              7, 8, 9);
    cout << sum(Mat(m*m.t())) << endl;
@endcode
Except of the plain constructor which takes a list of elements, Matx can be initialized from a C-array:
@code{.cpp}
    float values[] = { 1, 2, 3};
    Matx31f m(values);
@endcode
In case if C++11 features are available, std::initializer_list can be also used to initialize Matx:
@code{.cpp}
    Matx31f m = { 1, 2, 3};
@endcode
 */
template<typename _Tp, int m, int n> class Matx
{
public:
    enum {
           rows     = m,
           cols     = n,
           channels = rows*cols,
#ifdef OPENCV_TRAITS_ENABLE_DEPRECATED
           depth    = traits::Type<_Tp>::value,
           type     = CV_MAKETYPE(depth, channels),
#endif
           shortdim = (m < n ? m : n)
         };

    typedef _Tp                           value_type;
    typedef Matx<_Tp, m, n>               mat_type;
    typedef Matx<_Tp, shortdim, 1> diag_type;

    //! default constructor
    Matx();

    explicit Matx(_Tp v0); //!< 1x1 matrix
    Matx(_Tp v0, _Tp v1); //!< 1x2 or 2x1 matrix
    Matx(_Tp v0, _Tp v1, _Tp v2); //!< 1x3 or 3x1 matrix
    Matx(_Tp v0, _Tp v1, _Tp v2, _Tp v3); //!< 1x4, 2x2 or 4x1 matrix
    Matx(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4); //!< 1x5 or 5x1 matrix
    Matx(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4, _Tp v5); //!< 1x6, 2x3, 3x2 or 6x1 matrix
    Matx(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4, _Tp v5, _Tp v6); //!< 1x7 or 7x1 matrix
    Matx(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4, _Tp v5, _Tp v6, _Tp v7); //!< 1x8, 2x4, 4x2 or 8x1 matrix
    Matx(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4, _Tp v5, _Tp v6, _Tp v7, _Tp v8); //!< 1x9, 3x3 or 9x1 matrix
    Matx(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4, _Tp v5, _Tp v6, _Tp v7, _Tp v8, _Tp v9); //!< 1x10, 2x5 or 5x2 or 10x1 matrix
    Matx(_Tp v0, _Tp v1, _Tp v2, _Tp v3,
         _Tp v4, _Tp v5, _Tp v6, _Tp v7,
         _Tp v8, _Tp v9, _Tp v10, _Tp v11); //!< 1x12, 2x6, 3x4, 4x3, 6x2 or 12x1 matrix
    Matx(_Tp v0, _Tp v1, _Tp v2, _Tp v3,
         _Tp v4, _Tp v5, _Tp v6, _Tp v7,
         _Tp v8, _Tp v9, _Tp v10, _Tp v11,
         _Tp v12, _Tp v13); //!< 1x14, 2x7, 7x2 or 14x1 matrix
    Matx(_Tp v0, _Tp v1, _Tp v2, _Tp v3,
         _Tp v4, _Tp v5, _Tp v6, _Tp v7,
         _Tp v8, _Tp v9, _Tp v10, _Tp v11,
         _Tp v12, _Tp v13, _Tp v14, _Tp v15); //!< 1x16, 4x4 or 16x1 matrix
    explicit Matx(const _Tp* vals); //!< initialize from a plain array

    Matx(std::initializer_list<_Tp>); //!< initialize from an initializer list

    static Matx all(_Tp alpha);
    static Matx zeros();
    static Matx ones();
    static Matx eye();
    static Matx diag(const diag_type& d);
    static Matx randu(_Tp a, _Tp b);
    static Matx randn(_Tp a, _Tp b);

    //! dot product computed with the default precision
    _Tp dot(const Matx<_Tp, m, n>& v) const;

    //! dot product computed in double-precision arithmetics
    double ddot(const Matx<_Tp, m, n>& v) const;

    //! conversion to another data type
    template<typename T2> operator Matx<T2, m, n>() const;

    //! change the matrix shape
    template<int m1, int n1> Matx<_Tp, m1, n1> reshape() const;

    //! extract part of the matrix
    template<int m1, int n1> Matx<_Tp, m1, n1> get_minor(int base_row, int base_col) const;

    //! extract the matrix row
    Matx<_Tp, 1, n> row(int i) const;

    //! extract the matrix column
    Matx<_Tp, m, 1> col(int i) const;

    //! extract the matrix diagonal
    diag_type diag() const;

    //! transpose the matrix
    Matx<_Tp, n, m> t() const;

    //! invert the matrix
    Matx<_Tp, n, m> inv(int method=DECOMP_LU, bool *p_is_ok = NULL) const;

    //! solve linear system
    template<int l> Matx<_Tp, n, l> solve(const Matx<_Tp, m, l>& rhs, int flags=DECOMP_LU) const;
    Vec<_Tp, n> solve(const Vec<_Tp, m>& rhs, int method) const;

    //! multiply two matrices element-wise
    Matx<_Tp, m, n> mul(const Matx<_Tp, m, n>& a) const;

    //! divide two matrices element-wise
    Matx<_Tp, m, n> div(const Matx<_Tp, m, n>& a) const;

    //! element access
    const _Tp& operator ()(int row, int col) const;
    _Tp& operator ()(int row, int col);

    //! 1D element access
    const _Tp& operator ()(int i) const;
    _Tp& operator ()(int i);

    Matx(const Matx<_Tp, m, n>& a, const Matx<_Tp, m, n>& b, Matx_AddOp);
    Matx(const Matx<_Tp, m, n>& a, const Matx<_Tp, m, n>& b, Matx_SubOp);
    template<typename _T2> Matx(const Matx<_Tp, m, n>& a, _T2 alpha, Matx_ScaleOp);
    Matx(const Matx<_Tp, m, n>& a, const Matx<_Tp, m, n>& b, Matx_MulOp);
    Matx(const Matx<_Tp, m, n>& a, const Matx<_Tp, m, n>& b, Matx_DivOp);
    template<int l> Matx(const Matx<_Tp, m, l>& a, const Matx<_Tp, l, n>& b, Matx_MatMulOp);
    Matx(const Matx<_Tp, n, m>& a, Matx_TOp);

    _Tp val[m*n]; //< matrix elements
};

typedef Matx<float, 1, 2> Matx12f;
typedef Matx<double, 1, 2> Matx12d;
typedef Matx<float, 1, 3> Matx13f;
typedef Matx<double, 1, 3> Matx13d;
typedef Matx<float, 1, 4> Matx14f;
typedef Matx<double, 1, 4> Matx14d;
typedef Matx<float, 1, 6> Matx16f;
typedef Matx<double, 1, 6> Matx16d;

typedef Matx<float, 2, 1> Matx21f;
typedef Matx<double, 2, 1> Matx21d;
typedef Matx<float, 3, 1> Matx31f;
typedef Matx<double, 3, 1> Matx31d;
typedef Matx<float, 4, 1> Matx41f;
typedef Matx<double, 4, 1> Matx41d;
typedef Matx<float, 6, 1> Matx61f;
typedef Matx<double, 6, 1> Matx61d;

typedef Matx<float, 2, 2> Matx22f;
typedef Matx<double, 2, 2> Matx22d;
typedef Matx<float, 2, 3> Matx23f;
typedef Matx<double, 2, 3> Matx23d;
typedef Matx<float, 3, 2> Matx32f;
typedef Matx<double, 3, 2> Matx32d;

typedef Matx<float, 3, 3> Matx33f;
typedef Matx<double, 3, 3> Matx33d;

typedef Matx<float, 3, 4> Matx34f;
typedef Matx<double, 3, 4> Matx34d;
typedef Matx<float, 4, 3> Matx43f;
typedef Matx<double, 4, 3> Matx43d;

typedef Matx<float, 4, 4> Matx44f;
typedef Matx<double, 4, 4> Matx44d;
typedef Matx<float, 6, 6> Matx66f;
typedef Matx<double, 6, 6> Matx66d;

/*!
  traits
*/
template<typename _Tp, int m, int n> class DataType< Matx<_Tp, m, n> >
{
public:
    typedef Matx<_Tp, m, n>                               value_type;
    typedef Matx<typename DataType<_Tp>::work_type, m, n> work_type;
    typedef _Tp                                           channel_type;
    typedef value_type                                    vec_type;

    enum { generic_type = 0,
           channels     = m * n,
           fmt          = traits::SafeFmt<channel_type>::fmt + ((channels - 1) << 8)
#ifdef OPENCV_TRAITS_ENABLE_DEPRECATED
           ,depth        = DataType<channel_type>::depth
           ,type         = CV_MAKETYPE(depth, channels)
#endif
         };
};

namespace traits {
template<typename _Tp, int m, int n>
struct Depth< Matx<_Tp, m, n> > { enum { value = Depth<_Tp>::value }; };
template<typename _Tp, int m, int n>
struct Type< Matx<_Tp, m, n> > { enum { value = CV_MAKETYPE(Depth<_Tp>::value, n*m) }; };
} // namespace


/** @brief  Comma-separated Matrix Initializer
*/
template<typename _Tp, int m, int n> class MatxCommaInitializer
{
public:
    MatxCommaInitializer(Matx<_Tp, m, n>* _mtx);
    template<typename T2> MatxCommaInitializer<_Tp, m, n>& operator , (T2 val);
    Matx<_Tp, m, n> operator *() const;

    Matx<_Tp, m, n>* dst;
    int idx;
};

/*
 Utility methods
*/
template<typename _Tp, int m> static double determinant(const Matx<_Tp, m, m>& a);
template<typename _Tp, int m, int n> static double trace(const Matx<_Tp, m, n>& a);
template<typename _Tp, int m, int n> static double norm(const Matx<_Tp, m, n>& M);
template<typename _Tp, int m, int n> static double norm(const Matx<_Tp, m, n>& M, int normType);



/////////////////////// Vec (used as element of multi-channel images /////////////////////

/** @brief Template class for short numerical vectors, a partial case of Matx

This template class represents short numerical vectors (of 1, 2, 3, 4 ... elements) on which you
can perform basic arithmetical operations, access individual elements using [] operator etc. The
vectors are allocated on stack, as opposite to std::valarray, std::vector, cv::Mat etc., which
elements are dynamically allocated in the heap.

The template takes 2 parameters:
@tparam _Tp element type
@tparam cn the number of elements

In addition to the universal notation like Vec<float, 3>, you can use shorter aliases
for the most popular specialized variants of Vec, e.g. Vec3f ~ Vec<float, 3>.

It is possible to convert Vec\<T,2\> to/from Point_, Vec\<T,3\> to/from Point3_ , and Vec\<T,4\>
to CvScalar or Scalar_. Use operator[] to access the elements of Vec.

All the expected vector operations are also implemented:
-   v1 = v2 + v3
-   v1 = v2 - v3
-   v1 = v2 \* scale
-   v1 = scale \* v2
-   v1 = -v2
-   v1 += v2 and other augmenting operations
-   v1 == v2, v1 != v2
-   norm(v1) (euclidean norm)
The Vec class is commonly used to describe pixel types of multi-channel arrays. See Mat for details.
*/
template<typename _Tp, int cn> class Vec : public Matx<_Tp, cn, 1>
{
public:
    typedef _Tp value_type;
    enum {
           channels = cn,
#ifdef OPENCV_TRAITS_ENABLE_DEPRECATED
           depth    = Matx<_Tp, cn, 1>::depth,
           type     = CV_MAKETYPE(depth, channels),
#endif
           _dummy_enum_finalizer = 0
         };

    //! default constructor
    Vec();

    Vec(_Tp v0); //!< 1-element vector constructor
    Vec(_Tp v0, _Tp v1); //!< 2-element vector constructor
    Vec(_Tp v0, _Tp v1, _Tp v2); //!< 3-element vector constructor
    Vec(_Tp v0, _Tp v1, _Tp v2, _Tp v3); //!< 4-element vector constructor
    Vec(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4); //!< 5-element vector constructor
    Vec(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4, _Tp v5); //!< 6-element vector constructor
    Vec(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4, _Tp v5, _Tp v6); //!< 7-element vector constructor
    Vec(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4, _Tp v5, _Tp v6, _Tp v7); //!< 8-element vector constructor
    Vec(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4, _Tp v5, _Tp v6, _Tp v7, _Tp v8); //!< 9-element vector constructor
    Vec(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4, _Tp v5, _Tp v6, _Tp v7, _Tp v8, _Tp v9); //!< 10-element vector constructor
    Vec(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4, _Tp v5, _Tp v6, _Tp v7, _Tp v8, _Tp v9, _Tp v10, _Tp v11, _Tp v12, _Tp v13); //!< 14-element vector constructor
    explicit Vec(const _Tp* values);

    Vec(std::initializer_list<_Tp>);

    Vec(const Vec<_Tp, cn>& v);

    static Vec all(_Tp alpha);

    //! per-element multiplication
    Vec mul(const Vec<_Tp, cn>& v) const;

    //! conjugation (makes sense for complex numbers and quaternions)
    Vec conj() const;

    /*!
      cross product of the two 3D vectors.

      For other dimensionalities the exception is raised
    */
    Vec cross(const Vec& v) const;
    //! conversion to another data type
    template<typename T2> operator Vec<T2, cn>() const;

    /*! element access */
    const _Tp& operator [](int i) const;
    _Tp& operator[](int i);
    const _Tp& operator ()(int i) const;
    _Tp& operator ()(int i);

#ifdef CV_CXX11
    Vec<_Tp, cn>& operator=(const Vec<_Tp, cn>& rhs) = default;
#endif

    Vec(const Matx<_Tp, cn, 1>& a, const Matx<_Tp, cn, 1>& b, Matx_AddOp);
    Vec(const Matx<_Tp, cn, 1>& a, const Matx<_Tp, cn, 1>& b, Matx_SubOp);
    template<typename _T2> Vec(const Matx<_Tp, cn, 1>& a, _T2 alpha, Matx_ScaleOp);
};

/** @name Shorter aliases for the most popular specializations of Vec<T,n>
  @{
*/
typedef Vec<uchar, 2> Vec2b;
typedef Vec<uchar, 3> Vec3b;
typedef Vec<uchar, 4> Vec4b;

typedef Vec<short, 2> Vec2s;
typedef Vec<short, 3> Vec3s;
typedef Vec<short, 4> Vec4s;

typedef Vec<ushort, 2> Vec2w;
typedef Vec<ushort, 3> Vec3w;
typedef Vec<ushort, 4> Vec4w;

typedef Vec<int, 2> Vec2i;
typedef Vec<int, 3> Vec3i;
typedef Vec<int, 4> Vec4i;
typedef Vec<int, 6> Vec6i;
typedef Vec<int, 8> Vec8i;

typedef Vec<float, 2> Vec2f;
typedef Vec<float, 3> Vec3f;
typedef Vec<float, 4> Vec4f;
typedef Vec<float, 6> Vec6f;

typedef Vec<double, 2> Vec2d;
typedef Vec<double, 3> Vec3d;
typedef Vec<double, 4> Vec4d;
typedef Vec<double, 6> Vec6d;
/** @} */

/*!
  traits
*/
template<typename _Tp, int cn> class DataType< Vec<_Tp, cn> >
{
public:
    typedef Vec<_Tp, cn>                               value_type;
    typedef Vec<typename DataType<_Tp>::work_type, cn> work_type;
    typedef _Tp                                        channel_type;
    typedef value_type                                 vec_type;

    enum { generic_type = 0,
           channels     = cn,
           fmt          = DataType<channel_type>::fmt + ((channels - 1) << 8),
#ifdef OPENCV_TRAITS_ENABLE_DEPRECATED
           depth        = DataType<channel_type>::depth,
           type         = CV_MAKETYPE(depth, channels),
#endif
           _dummy_enum_finalizer = 0
         };
};

namespace traits {
template<typename _Tp, int cn>
struct Depth< Vec<_Tp, cn> > { enum { value = Depth<_Tp>::value }; };
template<typename _Tp, int cn>
struct Type< Vec<_Tp, cn> > { enum { value = CV_MAKETYPE(Depth<_Tp>::value, cn) }; };
} // namespace


/** @brief  Comma-separated Vec Initializer
*/
template<typename _Tp, int m> class VecCommaInitializer : public MatxCommaInitializer<_Tp, m, 1>
{
public:
    VecCommaInitializer(Vec<_Tp, m>* _vec);
    template<typename T2> VecCommaInitializer<_Tp, m>& operator , (T2 val);
    Vec<_Tp, m> operator *() const;
};

template<typename _Tp, int cn> static Vec<_Tp, cn> normalize(const Vec<_Tp, cn>& v);

//! @} core_basic

//! @cond IGNORED

///////////////////////////////////// helper classes /////////////////////////////////////
namespace internal
{

template<typename _Tp, int m> struct Matx_DetOp
{
    double operator ()(const Matx<_Tp, m, m>& a) const
    {
        Matx<_Tp, m, m> temp = a;
        double p = LU(temp.val, m*sizeof(_Tp), m, 0, 0, 0);
        if( p == 0 )
            return p;
        for( int i = 0; i < m; i++ )
            p *= temp(i, i);
        return p;
    }
};

template<typename _Tp> struct Matx_DetOp<_Tp, 1>
{
    double operator ()(const Matx<_Tp, 1, 1>& a) const
    {
        return a(0,0);
    }
};

template<typename _Tp> struct Matx_DetOp<_Tp, 2>
{
    double operator ()(const Matx<_Tp, 2, 2>& a) const
    {
        return a(0,0)*a(1,1) - a(0,1)*a(1,0);
    }
};

template<typename _Tp> struct Matx_DetOp<_Tp, 3>
{
    double operator ()(const Matx<_Tp, 3, 3>& a) const
    {
        return a(0,0)*(a(1,1)*a(2,2) - a(2,1)*a(1,2)) -
            a(0,1)*(a(1,0)*a(2,2) - a(2,0)*a(1,2)) +
            a(0,2)*(a(1,0)*a(2,1) - a(2,0)*a(1,1));
    }
};

template<typename _Tp> Vec<_Tp, 2> inline conjugate(const Vec<_Tp, 2>& v)
{
    return Vec<_Tp, 2>(v[0], -v[1]);
}

template<typename _Tp> Vec<_Tp, 4> inline conjugate(const Vec<_Tp, 4>& v)
{
    return Vec<_Tp, 4>(v[0], -v[1], -v[2], -v[3]);
}

} // internal



////////////////////////////////// Matx Implementation ///////////////////////////////////

template<typename _Tp, int m, int n> inline
Matx<_Tp, m, n>::Matx()
{
    for(int i = 0; i < channels; i++) val[i] = _Tp(0);
}

template<typename _Tp, int m, int n> inline
Matx<_Tp, m, n>::Matx(_Tp v0)
{
    val[0] = v0;
    for(int i = 1; i < channels; i++) val[i] = _Tp(0);
}

template<typename _Tp, int m, int n> inline
Matx<_Tp, m, n>::Matx(_Tp v0, _Tp v1)
{
    CV_StaticAssert(channels >= 2, "Matx should have at least 2 elements.");
    val[0] = v0; val[1] = v1;
    for(int i = 2; i < channels; i++) val[i] = _Tp(0);
}

template<typename _Tp, int m, int n> inline
Matx<_Tp, m, n>::Matx(_Tp v0, _Tp v1, _Tp v2)
{
    CV_StaticAssert(channels >= 3, "Matx should have at least 3 elements.");
    val[0] = v0; val[1] = v1; val[2] = v2;
    for(int i = 3; i < channels; i++) val[i] = _Tp(0);
}

template<typename _Tp, int m, int n> inline
Matx<_Tp, m, n>::Matx(_Tp v0, _Tp v1, _Tp v2, _Tp v3)
{
    CV_StaticAssert(channels >= 4, "Matx should have at least 4 elements.");
    val[0] = v0; val[1] = v1; val[2] = v2; val[3] = v3;
    for(int i = 4; i < channels; i++) val[i] = _Tp(0);
}

template<typename _Tp, int m, int n> inline
Matx<_Tp, m, n>::Matx(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4)
{
    CV_StaticAssert(channels >= 5, "Matx should have at least 5 elements.");
    val[0] = v0; val[1] = v1; val[2] = v2; val[3] = v3; val[4] = v4;
    for(int i = 5; i < channels; i++) val[i] = _Tp(0);
}

template<typename _Tp, int m, int n> inline
Matx<_Tp, m, n>::Matx(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4, _Tp v5)
{
    CV_StaticAssert(channels >= 6, "Matx should have at least 6 elements.");
    val[0] = v0; val[1] = v1; val[2] = v2; val[3] = v3;
    val[4] = v4; val[5] = v5;
    for(int i = 6; i < channels; i++) val[i] = _Tp(0);
}

template<typename _Tp, int m, int n> inline
Matx<_Tp, m, n>::Matx(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4, _Tp v5, _Tp v6)
{
    CV_StaticAssert(channels >= 7, "Matx should have at least 7 elements.");
    val[0] = v0; val[1] = v1; val[2] = v2; val[3] = v3;
    val[4] = v4; val[5] = v5; val[6] = v6;
    for(int i = 7; i < channels; i++) val[i] = _Tp(0);
}

template<typename _Tp, int m, int n> inline
Matx<_Tp, m, n>::Matx(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4, _Tp v5, _Tp v6, _Tp v7)
{
    CV_StaticAssert(channels >= 8, "Matx should have at least 8 elements.");
    val[0] = v0; val[1] = v1; val[2] = v2; val[3] = v3;
    val[4] = v4; val[5] = v5; val[6] = v6; val[7] = v7;
    for(int i = 8; i < channels; i++) val[i] = _Tp(0);
}

template<typename _Tp, int m, int n> inline
Matx<_Tp, m, n>::Matx(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4, _Tp v5, _Tp v6, _Tp v7, _Tp v8)
{
    CV_StaticAssert(channels >= 9, "Matx should have at least 9 elements.");
    val[0] = v0; val[1] = v1; val[2] = v2; val[3] = v3;
    val[4] = v4; val[5] = v5; val[6] = v6; val[7] = v7;
    val[8] = v8;
    for(int i = 9; i < channels; i++) val[i] = _Tp(0);
}

template<typename _Tp, int m, int n> inline
Matx<_Tp, m, n>::Matx(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4, _Tp v5, _Tp v6, _Tp v7, _Tp v8, _Tp v9)
{
    CV_StaticAssert(channels >= 10, "Matx should have at least 10 elements.");
    val[0] = v0; val[1] = v1; val[2] = v2; val[3] = v3;
    val[4] = v4; val[5] = v5; val[6] = v6; val[7] = v7;
    val[8] = v8; val[9] = v9;
    for(int i = 10; i < channels; i++) val[i] = _Tp(0);
}


template<typename _Tp, int m, int n> inline
Matx<_Tp,m,n>::Matx(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4, _Tp v5, _Tp v6, _Tp v7, _Tp v8, _Tp v9, _Tp v10, _Tp v11)
{
    CV_StaticAssert(channels >= 12, "Matx should have at least 12 elements.");
    val[0] = v0; val[1] = v1; val[2] = v2; val[3] = v3;
    val[4] = v4; val[5] = v5; val[6] = v6; val[7] = v7;
    val[8] = v8; val[9] = v9; val[10] = v10; val[11] = v11;
    for(int i = 12; i < channels; i++) val[i] = _Tp(0);
}

template<typename _Tp, int m, int n> inline
Matx<_Tp,m,n>::Matx(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4, _Tp v5, _Tp v6, _Tp v7, _Tp v8, _Tp v9, _Tp v10, _Tp v11, _Tp v12, _Tp v13)
{
    CV_StaticAssert(channels >= 14, "Matx should have at least 14 elements.");
    val[0] = v0; val[1] = v1; val[2] = v2; val[3] = v3;
    val[4] = v4; val[5] = v5; val[6] = v6; val[7] = v7;
    val[8] = v8; val[9] = v9; val[10] = v10; val[11] = v11;
    val[12] = v12; val[13] = v13;
    for (int i = 14; i < channels; i++) val[i] = _Tp(0);
}


template<typename _Tp, int m, int n> inline
Matx<_Tp,m,n>::Matx(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4, _Tp v5, _Tp v6, _Tp v7, _Tp v8, _Tp v9, _Tp v10, _Tp v11, _Tp v12, _Tp v13, _Tp v14, _Tp v15)
{
    CV_StaticAssert(channels >= 16, "Matx should have at least 16 elements.");
    val[0] = v0; val[1] = v1; val[2] = v2; val[3] = v3;
    val[4] = v4; val[5] = v5; val[6] = v6; val[7] = v7;
    val[8] = v8; val[9] = v9; val[10] = v10; val[11] = v11;
    val[12] = v12; val[13] = v13; val[14] = v14; val[15] = v15;
    for(int i = 16; i < channels; i++) val[i] = _Tp(0);
}

template<typename _Tp, int m, int n> inline
Matx<_Tp, m, n>::Matx(const _Tp* values)
{
    for( int i = 0; i < channels; i++ ) val[i] = values[i];
}

template<typename _Tp, int m, int n> inline
Matx<_Tp, m, n>::Matx(std::initializer_list<_Tp> list)
{
    CV_DbgAssert(list.size() == channels);
    int i = 0;
    for(const auto& elem : list)
    {
        val[i++] = elem;
    }
}

template<typename _Tp, int m, int n> inline
Matx<_Tp, m, n> Matx<_Tp, m, n>::all(_Tp alpha)
{
    Matx<_Tp, m, n> M;
    for( int i = 0; i < m*n; i++ ) M.val[i] = alpha;
    return M;
}

template<typename _Tp, int m, int n> inline
Matx<_Tp,m,n> Matx<_Tp,m,n>::zeros()
{
    return all(0);
}

template<typename _Tp, int m, int n> inline
Matx<_Tp,m,n> Matx<_Tp,m,n>::ones()
{
    return all(1);
}

template<typename _Tp, int m, int n> inline
Matx<_Tp,m,n> Matx<_Tp,m,n>::eye()
{
    Matx<_Tp,m,n> M;
    for(int i = 0; i < shortdim; i++)
        M(i,i) = 1;
    return M;
}

template<typename _Tp, int m, int n> inline
_Tp Matx<_Tp, m, n>::dot(const Matx<_Tp, m, n>& M) const
{
    _Tp s = 0;
    for( int i = 0; i < channels; i++ ) s += val[i]*M.val[i];
    return s;
}

template<typename _Tp, int m, int n> inline
double Matx<_Tp, m, n>::ddot(const Matx<_Tp, m, n>& M) const
{
    double s = 0;
    for( int i = 0; i < channels; i++ ) s += (double)val[i]*M.val[i];
    return s;
}

template<typename _Tp, int m, int n> inline
Matx<_Tp,m,n> Matx<_Tp,m,n>::diag(const typename Matx<_Tp,m,n>::diag_type& d)
{
    Matx<_Tp,m,n> M;
    for(int i = 0; i < shortdim; i++)
        M(i,i) = d(i, 0);
    return M;
}

template<typename _Tp, int m, int n> template<typename T2>
inline Matx<_Tp, m, n>::operator Matx<T2, m, n>() const
{
    Matx<T2, m, n> M;
    for( int i = 0; i < m*n; i++ ) M.val[i] = saturate_cast<T2>(val[i]);
    return M;
}

template<typename _Tp, int m, int n> template<int m1, int n1> inline
Matx<_Tp, m1, n1> Matx<_Tp, m, n>::reshape() const
{
    CV_StaticAssert(m1*n1 == m*n, "Input and destnarion matrices must have the same number of elements");
    return (const Matx<_Tp, m1, n1>&)*this;
}

template<typename _Tp, int m, int n>
template<int m1, int n1> inline
Matx<_Tp, m1, n1> Matx<_Tp, m, n>::get_minor(int base_row, int base_col) const
{
    CV_DbgAssert(0 <= base_row && base_row+m1 <= m && 0 <= base_col && base_col+n1 <= n);
    Matx<_Tp, m1, n1> s;
    for( int di = 0; di < m1; di++ )
        for( int dj = 0; dj < n1; dj++ )
            s(di, dj) = (*this)(base_row+di, base_col+dj);
    return s;
}

template<typename _Tp, int m, int n> inline
Matx<_Tp, 1, n> Matx<_Tp, m, n>::row(int i) const
{
    CV_DbgAssert((unsigned)i < (unsigned)m);
    return Matx<_Tp, 1, n>(&val[i*n]);
}

template<typename _Tp, int m, int n> inline
Matx<_Tp, m, 1> Matx<_Tp, m, n>::col(int j) const
{
    CV_DbgAssert((unsigned)j < (unsigned)n);
    Matx<_Tp, m, 1> v;
    for( int i = 0; i < m; i++ )
        v.val[i] = val[i*n + j];
    return v;
}

template<typename _Tp, int m, int n> inline
typename Matx<_Tp, m, n>::diag_type Matx<_Tp, m, n>::diag() const
{
    diag_type d;
    for( int i = 0; i < shortdim; i++ )
        d.val[i] = val[i*n + i];
    return d;
}

template<typename _Tp, int m, int n> inline
const _Tp& Matx<_Tp, m, n>::operator()(int row_idx, int col_idx) const
{
    CV_DbgAssert( (unsigned)row_idx < (unsigned)m && (unsigned)col_idx < (unsigned)n );
    return this->val[row_idx*n + col_idx];
}

template<typename _Tp, int m, int n> inline
_Tp& Matx<_Tp, m, n>::operator ()(int row_idx, int col_idx)
{
    CV_DbgAssert( (unsigned)row_idx < (unsigned)m && (unsigned)col_idx < (unsigned)n );
    return val[row_idx*n + col_idx];
}

template<typename _Tp, int m, int n> inline
const _Tp& Matx<_Tp, m, n>::operator ()(int i) const
{
    CV_StaticAssert(m == 1 || n == 1, "Single index indexation requires matrix to be a column or a row");
    CV_DbgAssert( (unsigned)i < (unsigned)(m+n-1) );
    return val[i];
}

template<typename _Tp, int m, int n> inline
_Tp& Matx<_Tp, m, n>::operator ()(int i)
{
    CV_StaticAssert(m == 1 || n == 1, "Single index indexation requires matrix to be a column or a row");
    CV_DbgAssert( (unsigned)i < (unsigned)(m+n-1) );
    return val[i];
}

template<typename _Tp, int m, int n> inline
Matx<_Tp,m,n>::Matx(const Matx<_Tp, m, n>& a, const Matx<_Tp, m, n>& b, Matx_AddOp)
{
    for( int i = 0; i < channels; i++ )
        val[i] = saturate_cast<_Tp>(a.val[i] + b.val[i]);
}

template<typename _Tp, int m, int n> inline
Matx<_Tp,m,n>::Matx(const Matx<_Tp, m, n>& a, const Matx<_Tp, m, n>& b, Matx_SubOp)
{
    for( int i = 0; i < channels; i++ )
        val[i] = saturate_cast<_Tp>(a.val[i] - b.val[i]);
}

template<typename _Tp, int m, int n> template<typename _T2> inline
Matx<_Tp,m,n>::Matx(const Matx<_Tp, m, n>& a, _T2 alpha, Matx_ScaleOp)
{
    for( int i = 0; i < channels; i++ )
        val[i] = saturate_cast<_Tp>(a.val[i] * alpha);
}

template<typename _Tp, int m, int n> inline
Matx<_Tp,m,n>::Matx(const Matx<_Tp, m, n>& a, const Matx<_Tp, m, n>& b, Matx_MulOp)
{
    for( int i = 0; i < channels; i++ )
        val[i] = saturate_cast<_Tp>(a.val[i] * b.val[i]);
}

template<typename _Tp, int m, int n> inline
Matx<_Tp,m,n>::Matx(const Matx<_Tp, m, n>& a, const Matx<_Tp, m, n>& b, Matx_DivOp)
{
    for( int i = 0; i < channels; i++ )
        val[i] = saturate_cast<_Tp>(a.val[i] / b.val[i]);
}

template<typename _Tp, int m, int n> template<int l> inline
Matx<_Tp,m,n>::Matx(const Matx<_Tp, m, l>& a, const Matx<_Tp, l, n>& b, Matx_MatMulOp)
{
    for( int i = 0; i < m; i++ )
        for( int j = 0; j < n; j++ )
        {
            _Tp s = 0;
            for( int k = 0; k < l; k++ )
                s += a(i, k) * b(k, j);
            val[i*n + j] = s;
        }
}

template<typename _Tp, int m, int n> inline
Matx<_Tp,m,n>::Matx(const Matx<_Tp, n, m>& a, Matx_TOp)
{
    for( int i = 0; i < m; i++ )
        for( int j = 0; j < n; j++ )
            val[i*n + j] = a(j, i);
}

template<typename _Tp, int m, int n> inline
Matx<_Tp, m, n> Matx<_Tp, m, n>::mul(const Matx<_Tp, m, n>& a) const
{
    return Matx<_Tp, m, n>(*this, a, Matx_MulOp());
}

template<typename _Tp, int m, int n> inline
Matx<_Tp, m, n> Matx<_Tp, m, n>::div(const Matx<_Tp, m, n>& a) const
{
    return Matx<_Tp, m, n>(*this, a, Matx_DivOp());
}

template<typename _Tp, int m, int n> inline
Matx<_Tp, n, m> Matx<_Tp, m, n>::t() const
{
    return Matx<_Tp, n, m>(*this, Matx_TOp());
}

template<typename _Tp, int m, int n> inline
Vec<_Tp, n> Matx<_Tp, m, n>::solve(const Vec<_Tp, m>& rhs, int method) const
{
    Matx<_Tp, n, 1> x = solve((const Matx<_Tp, m, 1>&)(rhs), method);
    return (Vec<_Tp, n>&)(x);
}

template<typename _Tp, int m> static inline
double determinant(const Matx<_Tp, m, m>& a)
{
    return cv::internal::Matx_DetOp<_Tp, m>()(a);
}

template<typename _Tp, int m, int n> static inline
double trace(const Matx<_Tp, m, n>& a)
{
    _Tp s = 0;
    for( int i = 0; i < std::min(m, n); i++ )
        s += a(i,i);
    return s;
}

template<typename _Tp, int m, int n> static inline
double norm(const Matx<_Tp, m, n>& M)
{
    return std::sqrt(normL2Sqr<_Tp, double>(M.val, m*n));
}

template<typename _Tp, int m, int n> static inline
double norm(const Matx<_Tp, m, n>& M, int normType)
{
    switch(normType) {
    case NORM_INF:
        return (double)normInf<_Tp, typename DataType<_Tp>::work_type>(M.val, m*n);
    case NORM_L1:
        return (double)normL1<_Tp, typename DataType<_Tp>::work_type>(M.val, m*n);
    case NORM_L2SQR:
        return (double)normL2Sqr<_Tp, typename DataType<_Tp>::work_type>(M.val, m*n);
    default:
    case NORM_L2:
        return std::sqrt((double)normL2Sqr<_Tp, typename DataType<_Tp>::work_type>(M.val, m*n));
    }
}



//////////////////////////////// matx comma initializer //////////////////////////////////

template<typename _Tp, typename _T2, int m, int n> static inline
MatxCommaInitializer<_Tp, m, n> operator << (const Matx<_Tp, m, n>& mtx, _T2 val)
{
    MatxCommaInitializer<_Tp, m, n> commaInitializer((Matx<_Tp, m, n>*)&mtx);
    return (commaInitializer, val);
}

template<typename _Tp, int m, int n> inline
MatxCommaInitializer<_Tp, m, n>::MatxCommaInitializer(Matx<_Tp, m, n>* _mtx)
    : dst(_mtx), idx(0)
{}

template<typename _Tp, int m, int n> template<typename _T2> inline
MatxCommaInitializer<_Tp, m, n>& MatxCommaInitializer<_Tp, m, n>::operator , (_T2 value)
{
    CV_DbgAssert( idx < m*n );
    dst->val[idx++] = saturate_cast<_Tp>(value);
    return *this;
}

template<typename _Tp, int m, int n> inline
Matx<_Tp, m, n> MatxCommaInitializer<_Tp, m, n>::operator *() const
{
    CV_DbgAssert( idx == n*m );
    return *dst;
}



/////////////////////////////////// Vec Implementation ///////////////////////////////////

template<typename _Tp, int cn> inline
Vec<_Tp, cn>::Vec() {}

template<typename _Tp, int cn> inline
Vec<_Tp, cn>::Vec(_Tp v0)
    : Matx<_Tp, cn, 1>(v0) {}

template<typename _Tp, int cn> inline
Vec<_Tp, cn>::Vec(_Tp v0, _Tp v1)
    : Matx<_Tp, cn, 1>(v0, v1) {}

template<typename _Tp, int cn> inline
Vec<_Tp, cn>::Vec(_Tp v0, _Tp v1, _Tp v2)
    : Matx<_Tp, cn, 1>(v0, v1, v2) {}

template<typename _Tp, int cn> inline
Vec<_Tp, cn>::Vec(_Tp v0, _Tp v1, _Tp v2, _Tp v3)
    : Matx<_Tp, cn, 1>(v0, v1, v2, v3) {}

template<typename _Tp, int cn> inline
Vec<_Tp, cn>::Vec(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4)
    : Matx<_Tp, cn, 1>(v0, v1, v2, v3, v4) {}

template<typename _Tp, int cn> inline
Vec<_Tp, cn>::Vec(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4, _Tp v5)
    : Matx<_Tp, cn, 1>(v0, v1, v2, v3, v4, v5) {}

template<typename _Tp, int cn> inline
Vec<_Tp, cn>::Vec(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4, _Tp v5, _Tp v6)
    : Matx<_Tp, cn, 1>(v0, v1, v2, v3, v4, v5, v6) {}

template<typename _Tp, int cn> inline
Vec<_Tp, cn>::Vec(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4, _Tp v5, _Tp v6, _Tp v7)
    : Matx<_Tp, cn, 1>(v0, v1, v2, v3, v4, v5, v6, v7) {}

template<typename _Tp, int cn> inline
Vec<_Tp, cn>::Vec(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4, _Tp v5, _Tp v6, _Tp v7, _Tp v8)
    : Matx<_Tp, cn, 1>(v0, v1, v2, v3, v4, v5, v6, v7, v8) {}

template<typename _Tp, int cn> inline
Vec<_Tp, cn>::Vec(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4, _Tp v5, _Tp v6, _Tp v7, _Tp v8, _Tp v9)
    : Matx<_Tp, cn, 1>(v0, v1, v2, v3, v4, v5, v6, v7, v8, v9) {}

template<typename _Tp, int cn> inline
Vec<_Tp, cn>::Vec(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4, _Tp v5, _Tp v6, _Tp v7, _Tp v8, _Tp v9, _Tp v10, _Tp v11, _Tp v12, _Tp v13)
    : Matx<_Tp, cn, 1>(v0, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13) {}

template<typename _Tp, int cn> inline
Vec<_Tp, cn>::Vec(const _Tp* values)
    : Matx<_Tp, cn, 1>(values) {}

template<typename _Tp, int cn> inline
Vec<_Tp, cn>::Vec(std::initializer_list<_Tp> list)
    : Matx<_Tp, cn, 1>(list) {}

template<typename _Tp, int cn> inline
Vec<_Tp, cn>::Vec(const Vec<_Tp, cn>& m)
    : Matx<_Tp, cn, 1>(m.val) {}

template<typename _Tp, int cn> inline
Vec<_Tp, cn>::Vec(const Matx<_Tp, cn, 1>& a, const Matx<_Tp, cn, 1>& b, Matx_AddOp op)
    : Matx<_Tp, cn, 1>(a, b, op) {}

template<typename _Tp, int cn> inline
Vec<_Tp, cn>::Vec(const Matx<_Tp, cn, 1>& a, const Matx<_Tp, cn, 1>& b, Matx_SubOp op)
    : Matx<_Tp, cn, 1>(a, b, op) {}

template<typename _Tp, int cn> template<typename _T2> inline
Vec<_Tp, cn>::Vec(const Matx<_Tp, cn, 1>& a, _T2 alpha, Matx_ScaleOp op)
    : Matx<_Tp, cn, 1>(a, alpha, op) {}

template<typename _Tp, int cn> inline
Vec<_Tp, cn> Vec<_Tp, cn>::all(_Tp alpha)
{
    Vec v;
    for( int i = 0; i < cn; i++ ) v.val[i] = alpha;
    return v;
}

template<typename _Tp, int cn> inline
Vec<_Tp, cn> Vec<_Tp, cn>::mul(const Vec<_Tp, cn>& v) const
{
    Vec<_Tp, cn> w;
    for( int i = 0; i < cn; i++ ) w.val[i] = saturate_cast<_Tp>(this->val[i]*v.val[i]);
    return w;
}

template<> inline
Vec<float, 2> Vec<float, 2>::conj() const
{
    return cv::internal::conjugate(*this);
}

template<> inline
Vec<double, 2> Vec<double, 2>::conj() const
{
    return cv::internal::conjugate(*this);
}

template<> inline
Vec<float, 4> Vec<float, 4>::conj() const
{
    return cv::internal::conjugate(*this);
}

template<> inline
Vec<double, 4> Vec<double, 4>::conj() const
{
    return cv::internal::conjugate(*this);
}

template<typename _Tp, int cn> inline
Vec<_Tp, cn> Vec<_Tp, cn>::cross(const Vec<_Tp, cn>&) const
{
    CV_StaticAssert(cn == 3, "for arbitrary-size vector there is no cross-product defined");
    return Vec<_Tp, cn>();
}

template<> inline
Vec<float, 3> Vec<float, 3>::cross(const Vec<float, 3>& v) const
{
    return Vec<float,3>(this->val[1]*v.val[2] - this->val[2]*v.val[1],
                     this->val[2]*v.val[0] - this->val[0]*v.val[2],
                     this->val[0]*v.val[1] - this->val[1]*v.val[0]);
}

template<> inline
Vec<double, 3> Vec<double, 3>::cross(const Vec<double, 3>& v) const
{
    return Vec<double,3>(this->val[1]*v.val[2] - this->val[2]*v.val[1],
                     this->val[2]*v.val[0] - this->val[0]*v.val[2],
                     this->val[0]*v.val[1] - this->val[1]*v.val[0]);
}

template<typename _Tp, int cn> template<typename T2> inline
Vec<_Tp, cn>::operator Vec<T2, cn>() const
{
    Vec<T2, cn> v;
    for( int i = 0; i < cn; i++ ) v.val[i] = saturate_cast<T2>(this->val[i]);
    return v;
}

template<typename _Tp, int cn> inline
const _Tp& Vec<_Tp, cn>::operator [](int i) const
{
    CV_DbgAssert( (unsigned)i < (unsigned)cn );
    return this->val[i];
}

template<typename _Tp, int cn> inline
_Tp& Vec<_Tp, cn>::operator [](int i)
{
    CV_DbgAssert( (unsigned)i < (unsigned)cn );
    return this->val[i];
}

template<typename _Tp, int cn> inline
const _Tp& Vec<_Tp, cn>::operator ()(int i) const
{
    CV_DbgAssert( (unsigned)i < (unsigned)cn );
    return this->val[i];
}

template<typename _Tp, int cn> inline
_Tp& Vec<_Tp, cn>::operator ()(int i)
{
    CV_DbgAssert( (unsigned)i < (unsigned)cn );
    return this->val[i];
}

template<typename _Tp, int cn> inline
Vec<_Tp, cn> normalize(const Vec<_Tp, cn>& v)
{
    double nv = norm(v);
    return v * (nv ? 1./nv : 0.);
}



//////////////////////////////// vec comma initializer //////////////////////////////////


template<typename _Tp, typename _T2, int cn> static inline
VecCommaInitializer<_Tp, cn> operator << (const Vec<_Tp, cn>& vec, _T2 val)
{
    VecCommaInitializer<_Tp, cn> commaInitializer((Vec<_Tp, cn>*)&vec);
    return (commaInitializer, val);
}

template<typename _Tp, int cn> inline
VecCommaInitializer<_Tp, cn>::VecCommaInitializer(Vec<_Tp, cn>* _vec)
    : MatxCommaInitializer<_Tp, cn, 1>(_vec)
{}

template<typename _Tp, int cn> template<typename _T2> inline
VecCommaInitializer<_Tp, cn>& VecCommaInitializer<_Tp, cn>::operator , (_T2 value)
{
    CV_DbgAssert( this->idx < cn );
    this->dst->val[this->idx++] = saturate_cast<_Tp>(value);
    return *this;
}

template<typename _Tp, int cn> inline
Vec<_Tp, cn> VecCommaInitializer<_Tp, cn>::operator *() const
{
    CV_DbgAssert( this->idx == cn );
    return *this->dst;
}

//! @endcond

///////////////////////////// Matx out-of-class operators ////////////////////////////////

//! @relates cv::Matx
//! @{

template<typename _Tp1, typename _Tp2, int m, int n> static inline
Matx<_Tp1, m, n>& operator += (Matx<_Tp1, m, n>& a, const Matx<_Tp2, m, n>& b)
{
    for( int i = 0; i < m*n; i++ )
        a.val[i] = saturate_cast<_Tp1>(a.val[i] + b.val[i]);
    return a;
}

template<typename _Tp1, typename _Tp2, int m, int n> static inline
Matx<_Tp1, m, n>& operator -= (Matx<_Tp1, m, n>& a, const Matx<_Tp2, m, n>& b)
{
    for( int i = 0; i < m*n; i++ )
        a.val[i] = saturate_cast<_Tp1>(a.val[i] - b.val[i]);
    return a;
}

template<typename _Tp, int m, int n> static inline
Matx<_Tp, m, n> operator + (const Matx<_Tp, m, n>& a, const Matx<_Tp, m, n>& b)
{
    return Matx<_Tp, m, n>(a, b, Matx_AddOp());
}

template<typename _Tp, int m, int n> static inline
Matx<_Tp, m, n> operator - (const Matx<_Tp, m, n>& a, const Matx<_Tp, m, n>& b)
{
    return Matx<_Tp, m, n>(a, b, Matx_SubOp());
}

template<typename _Tp, int m, int n> static inline
Matx<_Tp, m, n>& operator *= (Matx<_Tp, m, n>& a, int alpha)
{
    for( int i = 0; i < m*n; i++ )
        a.val[i] = saturate_cast<_Tp>(a.val[i] * alpha);
    return a;
}

template<typename _Tp, int m, int n> static inline
Matx<_Tp, m, n>& operator *= (Matx<_Tp, m, n>& a, float alpha)
{
    for( int i = 0; i < m*n; i++ )
        a.val[i] = saturate_cast<_Tp>(a.val[i] * alpha);
    return a;
}

template<typename _Tp, int m, int n> static inline
Matx<_Tp, m, n>& operator *= (Matx<_Tp, m, n>& a, double alpha)
{
    for( int i = 0; i < m*n; i++ )
        a.val[i] = saturate_cast<_Tp>(a.val[i] * alpha);
    return a;
}

template<typename _Tp, int m, int n> static inline
Matx<_Tp, m, n> operator * (const Matx<_Tp, m, n>& a, int alpha)
{
    return Matx<_Tp, m, n>(a, alpha, Matx_ScaleOp());
}

template<typename _Tp, int m, int n> static inline
Matx<_Tp, m, n> operator * (const Matx<_Tp, m, n>& a, float alpha)
{
    return Matx<_Tp, m, n>(a, alpha, Matx_ScaleOp());
}

template<typename _Tp, int m, int n> static inline
Matx<_Tp, m, n> operator * (const Matx<_Tp, m, n>& a, double alpha)
{
    return Matx<_Tp, m, n>(a, alpha, Matx_ScaleOp());
}

template<typename _Tp, int m, int n> static inline
Matx<_Tp, m, n> operator * (int alpha, const Matx<_Tp, m, n>& a)
{
    return Matx<_Tp, m, n>(a, alpha, Matx_ScaleOp());
}

template<typename _Tp, int m, int n> static inline
Matx<_Tp, m, n> operator * (float alpha, const Matx<_Tp, m, n>& a)
{
    return Matx<_Tp, m, n>(a, alpha, Matx_ScaleOp());
}

template<typename _Tp, int m, int n> static inline
Matx<_Tp, m, n> operator * (double alpha, const Matx<_Tp, m, n>& a)
{
    return Matx<_Tp, m, n>(a, alpha, Matx_ScaleOp());
}

template<typename _Tp, int m, int n> static inline
Matx<_Tp, m, n> operator - (const Matx<_Tp, m, n>& a)
{
    return Matx<_Tp, m, n>(a, -1, Matx_ScaleOp());
}

template<typename _Tp, int m, int n, int l> static inline
Matx<_Tp, m, n> operator * (const Matx<_Tp, m, l>& a, const Matx<_Tp, l, n>& b)
{
    return Matx<_Tp, m, n>(a, b, Matx_MatMulOp());
}

template<typename _Tp, int m, int n> static inline
Vec<_Tp, m> operator * (const Matx<_Tp, m, n>& a, const Vec<_Tp, n>& b)
{
    Matx<_Tp, m, 1> c(a, b, Matx_MatMulOp());
    return (const Vec<_Tp, m>&)(c);
}

template<typename _Tp, int m, int n> static inline
bool operator == (const Matx<_Tp, m, n>& a, const Matx<_Tp, m, n>& b)
{
    for( int i = 0; i < m*n; i++ )
        if( a.val[i] != b.val[i] ) return false;
    return true;
}

template<typename _Tp, int m, int n> static inline
bool operator != (const Matx<_Tp, m, n>& a, const Matx<_Tp, m, n>& b)
{
    return !(a == b);
}

//! @}

////////////////////////////// Vec out-of-class operators ////////////////////////////////

//! @relates cv::Vec
//! @{

template<typename _Tp1, typename _Tp2, int cn> static inline
Vec<_Tp1, cn>& operator += (Vec<_Tp1, cn>& a, const Vec<_Tp2, cn>& b)
{
    for( int i = 0; i < cn; i++ )
        a.val[i] = saturate_cast<_Tp1>(a.val[i] + b.val[i]);
    return a;
}

template<typename _Tp1, typename _Tp2, int cn> static inline
Vec<_Tp1, cn>& operator -= (Vec<_Tp1, cn>& a, const Vec<_Tp2, cn>& b)
{
    for( int i = 0; i < cn; i++ )
        a.val[i] = saturate_cast<_Tp1>(a.val[i] - b.val[i]);
    return a;
}

template<typename _Tp, int cn> static inline
Vec<_Tp, cn> operator + (const Vec<_Tp, cn>& a, const Vec<_Tp, cn>& b)
{
    return Vec<_Tp, cn>(a, b, Matx_AddOp());
}

template<typename _Tp, int cn> static inline
Vec<_Tp, cn> operator - (const Vec<_Tp, cn>& a, const Vec<_Tp, cn>& b)
{
    return Vec<_Tp, cn>(a, b, Matx_SubOp());
}

template<typename _Tp, int cn> static inline
Vec<_Tp, cn>& operator *= (Vec<_Tp, cn>& a, int alpha)
{
    for( int i = 0; i < cn; i++ )
        a[i] = saturate_cast<_Tp>(a[i]*alpha);
    return a;
}

template<typename _Tp, int cn> static inline
Vec<_Tp, cn>& operator *= (Vec<_Tp, cn>& a, float alpha)
{
    for( int i = 0; i < cn; i++ )
        a[i] = saturate_cast<_Tp>(a[i]*alpha);
    return a;
}

template<typename _Tp, int cn> static inline
Vec<_Tp, cn>& operator *= (Vec<_Tp, cn>& a, double alpha)
{
    for( int i = 0; i < cn; i++ )
        a[i] = saturate_cast<_Tp>(a[i]*alpha);
    return a;
}

template<typename _Tp, int cn> static inline
Vec<_Tp, cn>& operator /= (Vec<_Tp, cn>& a, int alpha)
{
    double ialpha = 1./alpha;
    for( int i = 0; i < cn; i++ )
        a[i] = saturate_cast<_Tp>(a[i]*ialpha);
    return a;
}

template<typename _Tp, int cn> static inline
Vec<_Tp, cn>& operator /= (Vec<_Tp, cn>& a, float alpha)
{
    float ialpha = 1.f/alpha;
    for( int i = 0; i < cn; i++ )
        a[i] = saturate_cast<_Tp>(a[i]*ialpha);
    return a;
}

template<typename _Tp, int cn> static inline
Vec<_Tp, cn>& operator /= (Vec<_Tp, cn>& a, double alpha)
{
    double ialpha = 1./alpha;
    for( int i = 0; i < cn; i++ )
        a[i] = saturate_cast<_Tp>(a[i]*ialpha);
    return a;
}

template<typename _Tp, int cn> static inline
Vec<_Tp, cn> operator * (const Vec<_Tp, cn>& a, int alpha)
{
    return Vec<_Tp, cn>(a, alpha, Matx_ScaleOp());
}

template<typename _Tp, int cn> static inline
Vec<_Tp, cn> operator * (int alpha, const Vec<_Tp, cn>& a)
{
    return Vec<_Tp, cn>(a, alpha, Matx_ScaleOp());
}

template<typename _Tp, int cn> static inline
Vec<_Tp, cn> operator * (const Vec<_Tp, cn>& a, float alpha)
{
    return Vec<_Tp, cn>(a, alpha, Matx_ScaleOp());
}

template<typename _Tp, int cn> static inline
Vec<_Tp, cn> operator * (float alpha, const Vec<_Tp, cn>& a)
{
    return Vec<_Tp, cn>(a, alpha, Matx_ScaleOp());
}

template<typename _Tp, int cn> static inline
Vec<_Tp, cn> operator * (const Vec<_Tp, cn>& a, double alpha)
{
    return Vec<_Tp, cn>(a, alpha, Matx_ScaleOp());
}

template<typename _Tp, int cn> static inline
Vec<_Tp, cn> operator * (double alpha, const Vec<_Tp, cn>& a)
{
    return Vec<_Tp, cn>(a, alpha, Matx_ScaleOp());
}

template<typename _Tp, int cn> static inline
Vec<_Tp, cn> operator / (const Vec<_Tp, cn>& a, int alpha)
{
    return Vec<_Tp, cn>(a, 1./alpha, Matx_ScaleOp());
}

template<typename _Tp, int cn> static inline
Vec<_Tp, cn> operator / (const Vec<_Tp, cn>& a, float alpha)
{
    return Vec<_Tp, cn>(a, 1.f/alpha, Matx_ScaleOp());
}

template<typename _Tp, int cn> static inline
Vec<_Tp, cn> operator / (const Vec<_Tp, cn>& a, double alpha)
{
    return Vec<_Tp, cn>(a, 1./alpha, Matx_ScaleOp());
}

template<typename _Tp, int cn> static inline
Vec<_Tp, cn> operator - (const Vec<_Tp, cn>& a)
{
    Vec<_Tp,cn> t;
    for( int i = 0; i < cn; i++ ) t.val[i] = saturate_cast<_Tp>(-a.val[i]);
    return t;
}

template<typename _Tp> inline Vec<_Tp, 4> operator * (const Vec<_Tp, 4>& v1, const Vec<_Tp, 4>& v2)
{
    return Vec<_Tp, 4>(saturate_cast<_Tp>(v1[0]*v2[0] - v1[1]*v2[1] - v1[2]*v2[2] - v1[3]*v2[3]),
                       saturate_cast<_Tp>(v1[0]*v2[1] + v1[1]*v2[0] + v1[2]*v2[3] - v1[3]*v2[2]),
                       saturate_cast<_Tp>(v1[0]*v2[2] - v1[1]*v2[3] + v1[2]*v2[0] + v1[3]*v2[1]),
                       saturate_cast<_Tp>(v1[0]*v2[3] + v1[1]*v2[2] - v1[2]*v2[1] + v1[3]*v2[0]));
}

template<typename _Tp> inline Vec<_Tp, 4>& operator *= (Vec<_Tp, 4>& v1, const Vec<_Tp, 4>& v2)
{
    v1 = v1 * v2;
    return v1;
}

//! @}

} // cv

#endif // OPENCV_CORE_MATX_HPP