all_layers.hpp 22.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#ifndef OPENCV_DNN_DNN_ALL_LAYERS_HPP
#define OPENCV_DNN_DNN_ALL_LAYERS_HPP
#include <opencv2/dnn.hpp>

namespace cv {
namespace dnn {
CV__DNN_INLINE_NS_BEGIN
//! @addtogroup dnn
//! @{

/** @defgroup dnnLayerList Partial List of Implemented Layers
  @{
  This subsection of dnn module contains information about built-in layers and their descriptions.

  Classes listed here, in fact, provides C++ API for creating instances of built-in layers.
  In addition to this way of layers instantiation, there is a more common factory API (see @ref dnnLayerFactory), it allows to create layers dynamically (by name) and register new ones.
  You can use both API, but factory API is less convenient for native C++ programming and basically designed for use inside importers (see @ref readNetFromCaffe(), @ref readNetFromTorch(), @ref readNetFromTensorflow()).

  Built-in layers partially reproduce functionality of corresponding Caffe and Torch7 layers.
  In particular, the following layers and Caffe importer were tested to reproduce <a href="http://caffe.berkeleyvision.org/tutorial/layers.html">Caffe</a> functionality:
  - Convolution
  - Deconvolution
  - Pooling
  - InnerProduct
  - TanH, ReLU, Sigmoid, BNLL, Power, AbsVal
  - Softmax
  - Reshape, Flatten, Slice, Split
  - LRN
  - MVN
  - Dropout (since it does nothing on forward pass -))
*/

    class CV_EXPORTS BlankLayer : public Layer
    {
    public:
        static Ptr<Layer> create(const LayerParams &params);
    };

    /**
     * Constant layer produces the same data blob at an every forward pass.
     */
    class CV_EXPORTS ConstLayer : public Layer
    {
    public:
        static Ptr<Layer> create(const LayerParams &params);
    };

    //! LSTM recurrent layer
    class CV_EXPORTS LSTMLayer : public Layer
    {
    public:
        /** Creates instance of LSTM layer */
        static Ptr<LSTMLayer> create(const LayerParams& params);

        /** @deprecated Use LayerParams::blobs instead.
        @brief Set trained weights for LSTM layer.

        LSTM behavior on each step is defined by current input, previous output, previous cell state and learned weights.

        Let @f$x_t@f$ be current input, @f$h_t@f$ be current output, @f$c_t@f$ be current state.
        Than current output and current cell state is computed as follows:
        @f{eqnarray*}{
        h_t &= o_t \odot tanh(c_t),               \\
        c_t &= f_t \odot c_{t-1} + i_t \odot g_t, \\
        @f}
        where @f$\odot@f$ is per-element multiply operation and @f$i_t, f_t, o_t, g_t@f$ is internal gates that are computed using learned wights.

        Gates are computed as follows:
        @f{eqnarray*}{
        i_t &= sigmoid&(W_{xi} x_t + W_{hi} h_{t-1} + b_i), \\
        f_t &= sigmoid&(W_{xf} x_t + W_{hf} h_{t-1} + b_f), \\
        o_t &= sigmoid&(W_{xo} x_t + W_{ho} h_{t-1} + b_o), \\
        g_t &= tanh   &(W_{xg} x_t + W_{hg} h_{t-1} + b_g), \\
        @f}
        where @f$W_{x?}@f$, @f$W_{h?}@f$ and @f$b_{?}@f$ are learned weights represented as matrices:
        @f$W_{x?} \in R^{N_h \times N_x}@f$, @f$W_{h?} \in R^{N_h \times N_h}@f$, @f$b_? \in R^{N_h}@f$.

        For simplicity and performance purposes we use @f$ W_x = [W_{xi}; W_{xf}; W_{xo}, W_{xg}] @f$
        (i.e. @f$W_x@f$ is vertical concatenation of @f$ W_{x?} @f$), @f$ W_x \in R^{4N_h \times N_x} @f$.
        The same for @f$ W_h = [W_{hi}; W_{hf}; W_{ho}, W_{hg}], W_h \in R^{4N_h \times N_h} @f$
        and for @f$ b = [b_i; b_f, b_o, b_g]@f$, @f$b \in R^{4N_h} @f$.

        @param Wh is matrix defining how previous output is transformed to internal gates (i.e. according to above mentioned notation is @f$ W_h @f$)
        @param Wx is matrix defining how current input is transformed to internal gates (i.e. according to above mentioned notation is @f$ W_x @f$)
        @param b  is bias vector (i.e. according to above mentioned notation is @f$ b @f$)
        */
        CV_DEPRECATED virtual void setWeights(const Mat &Wh, const Mat &Wx, const Mat &b) = 0;

        /** @brief Specifies shape of output blob which will be [[`T`], `N`] + @p outTailShape.
          * @details If this parameter is empty or unset then @p outTailShape = [`Wh`.size(0)] will be used,
          * where `Wh` is parameter from setWeights().
          */
        virtual void setOutShape(const MatShape &outTailShape = MatShape()) = 0;

        /** @deprecated Use flag `produce_cell_output` in LayerParams.
          * @brief Specifies either interpret first dimension of input blob as timestamp dimenion either as sample.
          *
          * If flag is set to true then shape of input blob will be interpreted as [`T`, `N`, `[data dims]`] where `T` specifies number of timestamps, `N` is number of independent streams.
          * In this case each forward() call will iterate through `T` timestamps and update layer's state `T` times.
          *
          * If flag is set to false then shape of input blob will be interpreted as [`N`, `[data dims]`].
          * In this case each forward() call will make one iteration and produce one timestamp with shape [`N`, `[out dims]`].
          */
        CV_DEPRECATED virtual void setUseTimstampsDim(bool use = true) = 0;

        /** @deprecated Use flag `use_timestamp_dim` in LayerParams.
         * @brief If this flag is set to true then layer will produce @f$ c_t @f$ as second output.
         * @details Shape of the second output is the same as first output.
         */
        CV_DEPRECATED virtual void setProduceCellOutput(bool produce = false) = 0;

        /* In common case it use single input with @f$x_t@f$ values to compute output(s) @f$h_t@f$ (and @f$c_t@f$).
         * @param input should contain packed values @f$x_t@f$
         * @param output contains computed outputs: @f$h_t@f$ (and @f$c_t@f$ if setProduceCellOutput() flag was set to true).
         *
         * If setUseTimstampsDim() is set to true then @p input[0] should has at least two dimensions with the following shape: [`T`, `N`, `[data dims]`],
         * where `T` specifies number of timestamps, `N` is number of independent streams (i.e. @f$ x_{t_0 + t}^{stream} @f$ is stored inside @p input[0][t, stream, ...]).
         *
         * If setUseTimstampsDim() is set to false then @p input[0] should contain single timestamp, its shape should has form [`N`, `[data dims]`] with at least one dimension.
         * (i.e. @f$ x_{t}^{stream} @f$ is stored inside @p input[0][stream, ...]).
        */

        int inputNameToIndex(String inputName) CV_OVERRIDE;
        int outputNameToIndex(const String& outputName) CV_OVERRIDE;
    };

    /** @brief Classical recurrent layer

    Accepts two inputs @f$x_t@f$ and @f$h_{t-1}@f$ and compute two outputs @f$o_t@f$ and @f$h_t@f$.

    - input: should contain packed input @f$x_t@f$.
    - output: should contain output @f$o_t@f$ (and @f$h_t@f$ if setProduceHiddenOutput() is set to true).

    input[0] should have shape [`T`, `N`, `data_dims`] where `T` and `N` is number of timestamps and number of independent samples of @f$x_t@f$ respectively.

    output[0] will have shape [`T`, `N`, @f$N_o@f$], where @f$N_o@f$ is number of rows in @f$ W_{xo} @f$ matrix.

    If setProduceHiddenOutput() is set to true then @p output[1] will contain a Mat with shape [`T`, `N`, @f$N_h@f$], where @f$N_h@f$ is number of rows in @f$ W_{hh} @f$ matrix.
    */
    class CV_EXPORTS RNNLayer : public Layer
    {
    public:
        /** Creates instance of RNNLayer */
        static Ptr<RNNLayer> create(const LayerParams& params);

        /** Setups learned weights.

        Recurrent-layer behavior on each step is defined by current input @f$ x_t @f$, previous state @f$ h_t @f$ and learned weights as follows:
        @f{eqnarray*}{
        h_t &= tanh&(W_{hh} h_{t-1} + W_{xh} x_t + b_h),  \\
        o_t &= tanh&(W_{ho} h_t + b_o),
        @f}

        @param Wxh is @f$ W_{xh} @f$ matrix
        @param bh  is @f$ b_{h}  @f$ vector
        @param Whh is @f$ W_{hh} @f$ matrix
        @param Who is @f$ W_{xo} @f$ matrix
        @param bo  is @f$ b_{o}  @f$ vector
        */
        virtual void setWeights(const Mat &Wxh, const Mat &bh, const Mat &Whh, const Mat &Who, const Mat &bo) = 0;

        /** @brief If this flag is set to true then layer will produce @f$ h_t @f$ as second output.
         * @details Shape of the second output is the same as first output.
         */
        virtual void setProduceHiddenOutput(bool produce = false) = 0;

    };

    class CV_EXPORTS BaseConvolutionLayer : public Layer
    {
    public:
        CV_DEPRECATED_EXTERNAL Size kernel, stride, pad, dilation, adjustPad;
        std::vector<size_t> adjust_pads;
        std::vector<size_t> kernel_size, strides, dilations;
        std::vector<size_t> pads_begin, pads_end;
        String padMode;
        int numOutput;
    };

    class CV_EXPORTS ConvolutionLayer : public BaseConvolutionLayer
    {
    public:
        static Ptr<BaseConvolutionLayer> create(const LayerParams& params);
    };

    class CV_EXPORTS DeconvolutionLayer : public BaseConvolutionLayer
    {
    public:
        static Ptr<BaseConvolutionLayer> create(const LayerParams& params);
    };

    class CV_EXPORTS LRNLayer : public Layer
    {
    public:
        int type;

        int size;
        float alpha, beta, bias;
        bool normBySize;

        static Ptr<LRNLayer> create(const LayerParams& params);
    };

    class CV_EXPORTS PoolingLayer : public Layer
    {
    public:
        int type;
        std::vector<size_t> kernel_size, strides;
        std::vector<size_t> pads_begin, pads_end;
        CV_DEPRECATED_EXTERNAL Size kernel, stride, pad;
        CV_DEPRECATED_EXTERNAL int pad_l, pad_t, pad_r, pad_b;
        bool globalPooling;
        bool computeMaxIdx;
        String padMode;
        bool ceilMode;
        // If true for average pooling with padding, divide an every output region
        // by a whole kernel area. Otherwise exclude zero padded values and divide
        // by number of real values.
        bool avePoolPaddedArea;
        // ROIPooling parameters.
        Size pooledSize;
        float spatialScale;
        // PSROIPooling parameters.
        int psRoiOutChannels;

        static Ptr<PoolingLayer> create(const LayerParams& params);
    };

    class CV_EXPORTS SoftmaxLayer : public Layer
    {
    public:
        bool logSoftMax;

        static Ptr<SoftmaxLayer> create(const LayerParams& params);
    };

    class CV_EXPORTS InnerProductLayer : public Layer
    {
    public:
        int axis;
        static Ptr<InnerProductLayer> create(const LayerParams& params);
    };

    class CV_EXPORTS MVNLayer : public Layer
    {
    public:
        float eps;
        bool normVariance, acrossChannels;

        static Ptr<MVNLayer> create(const LayerParams& params);
    };

    /* Reshaping */

    class CV_EXPORTS ReshapeLayer : public Layer
    {
    public:
        MatShape newShapeDesc;
        Range newShapeRange;

        static Ptr<ReshapeLayer> create(const LayerParams& params);
    };

    class CV_EXPORTS FlattenLayer : public Layer
    {
    public:
        static Ptr<FlattenLayer> create(const LayerParams &params);
    };

    class CV_EXPORTS ConcatLayer : public Layer
    {
    public:
        int axis;
        /**
         * @brief Add zero padding in case of concatenation of blobs with different
         * spatial sizes.
         *
         * Details: https://github.com/torch/nn/blob/master/doc/containers.md#depthconcat
         */
        bool padding;

        static Ptr<ConcatLayer> create(const LayerParams &params);
    };

    class CV_EXPORTS SplitLayer : public Layer
    {
    public:
        int outputsCount; //!< Number of copies that will be produced (is ignored when negative).

        static Ptr<SplitLayer> create(const LayerParams &params);
    };

    /**
     * Slice layer has several modes:
     * 1. Caffe mode
     * @param[in] axis Axis of split operation
     * @param[in] slice_point Array of split points
     *
     * Number of output blobs equals to number of split points plus one. The
     * first blob is a slice on input from 0 to @p slice_point[0] - 1 by @p axis,
     * the second output blob is a slice of input from @p slice_point[0] to
     * @p slice_point[1] - 1 by @p axis and the last output blob is a slice of
     * input from @p slice_point[-1] up to the end of @p axis size.
     *
     * 2. TensorFlow mode
     * @param begin Vector of start indices
     * @param size Vector of sizes
     *
     * More convenient numpy-like slice. One and only output blob
     * is a slice `input[begin[0]:begin[0]+size[0], begin[1]:begin[1]+size[1], ...]`
     *
     * 3. Torch mode
     * @param axis Axis of split operation
     *
     * Split input blob on the equal parts by @p axis.
     */
    class CV_EXPORTS SliceLayer : public Layer
    {
    public:
        /**
         * @brief Vector of slice ranges.
         *
         * The first dimension equals number of output blobs.
         * Inner vector has slice ranges for the first number of input dimensions.
         */
        std::vector<std::vector<Range> > sliceRanges;
        int axis;
        int num_split;

        static Ptr<SliceLayer> create(const LayerParams &params);
    };

    class CV_EXPORTS PermuteLayer : public Layer
    {
    public:
        static Ptr<PermuteLayer> create(const LayerParams& params);
    };

    /**
     * Permute channels of 4-dimensional input blob.
     * @param group Number of groups to split input channels and pick in turns
     *              into output blob.
     *
     * \f[ groupSize = \frac{number\ of\ channels}{group} \f]
     * \f[ output(n, c, h, w) = input(n, groupSize \times (c \% group) + \lfloor \frac{c}{group} \rfloor, h, w) \f]
     * Read more at https://arxiv.org/pdf/1707.01083.pdf
     */
    class CV_EXPORTS ShuffleChannelLayer : public Layer
    {
    public:
        static Ptr<Layer> create(const LayerParams& params);

        int group;
    };

    /**
     * @brief Adds extra values for specific axes.
     * @param paddings Vector of paddings in format
     *                 @code
     *                 [ pad_before, pad_after,  // [0]th dimension
     *                   pad_before, pad_after,  // [1]st dimension
     *                   ...
     *                   pad_before, pad_after ] // [n]th dimension
     *                 @endcode
     *                 that represents number of padded values at every dimension
     *                 starting from the first one. The rest of dimensions won't
     *                 be padded.
     * @param value Value to be padded. Defaults to zero.
     * @param type Padding type: 'constant', 'reflect'
     * @param input_dims Torch's parameter. If @p input_dims is not equal to the
     *                   actual input dimensionality then the `[0]th` dimension
     *                   is considered as a batch dimension and @p paddings are shifted
     *                   to a one dimension. Defaults to `-1` that means padding
     *                   corresponding to @p paddings.
     */
    class CV_EXPORTS PaddingLayer : public Layer
    {
    public:
        static Ptr<PaddingLayer> create(const LayerParams& params);
    };

    /* Activations */
    class CV_EXPORTS ActivationLayer : public Layer
    {
    public:
        virtual void forwardSlice(const float* src, float* dst, int len,
                                  size_t outPlaneSize, int cn0, int cn1) const = 0;
    };

    class CV_EXPORTS ReLULayer : public ActivationLayer
    {
    public:
        float negativeSlope;

        static Ptr<ReLULayer> create(const LayerParams &params);
    };

    class CV_EXPORTS ReLU6Layer : public ActivationLayer
    {
    public:
        float minValue, maxValue;

        static Ptr<ReLU6Layer> create(const LayerParams &params);
    };

    class CV_EXPORTS ChannelsPReLULayer : public ActivationLayer
    {
    public:
        static Ptr<Layer> create(const LayerParams& params);
    };

    class CV_EXPORTS ELULayer : public ActivationLayer
    {
    public:
        static Ptr<ELULayer> create(const LayerParams &params);
    };

    class CV_EXPORTS TanHLayer : public ActivationLayer
    {
    public:
        static Ptr<TanHLayer> create(const LayerParams &params);
    };

    class CV_EXPORTS SigmoidLayer : public ActivationLayer
    {
    public:
        static Ptr<SigmoidLayer> create(const LayerParams &params);
    };

    class CV_EXPORTS BNLLLayer : public ActivationLayer
    {
    public:
        static Ptr<BNLLLayer> create(const LayerParams &params);
    };

    class CV_EXPORTS AbsLayer : public ActivationLayer
    {
    public:
        static Ptr<AbsLayer> create(const LayerParams &params);
    };

    class CV_EXPORTS PowerLayer : public ActivationLayer
    {
    public:
        float power, scale, shift;

        static Ptr<PowerLayer> create(const LayerParams &params);
    };

    /* Layers used in semantic segmentation */

    class CV_EXPORTS CropLayer : public Layer
    {
    public:
        static Ptr<Layer> create(const LayerParams &params);
    };

    class CV_EXPORTS EltwiseLayer : public Layer
    {
    public:
        static Ptr<EltwiseLayer> create(const LayerParams &params);
    };

    class CV_EXPORTS BatchNormLayer : public ActivationLayer
    {
    public:
        bool hasWeights, hasBias;
        float epsilon;

        static Ptr<BatchNormLayer> create(const LayerParams &params);
    };

    class CV_EXPORTS MaxUnpoolLayer : public Layer
    {
    public:
        Size poolKernel;
        Size poolPad;
        Size poolStride;

        static Ptr<MaxUnpoolLayer> create(const LayerParams &params);
    };

    class CV_EXPORTS ScaleLayer : public Layer
    {
    public:
        bool hasBias;
        int axis;

        static Ptr<ScaleLayer> create(const LayerParams& params);
    };

    class CV_EXPORTS ShiftLayer : public Layer
    {
    public:
        static Ptr<Layer> create(const LayerParams& params);
    };

    class CV_EXPORTS PriorBoxLayer : public Layer
    {
    public:
        static Ptr<PriorBoxLayer> create(const LayerParams& params);
    };

    class CV_EXPORTS ReorgLayer : public Layer
    {
    public:
        static Ptr<ReorgLayer> create(const LayerParams& params);
    };

    class CV_EXPORTS RegionLayer : public Layer
    {
    public:
        static Ptr<RegionLayer> create(const LayerParams& params);
    };

    class CV_EXPORTS DetectionOutputLayer : public Layer
    {
    public:
        static Ptr<DetectionOutputLayer> create(const LayerParams& params);
    };

    /**
     * @brief \f$ L_p \f$ - normalization layer.
     * @param p Normalization factor. The most common `p = 1` for \f$ L_1 \f$ -
     *          normalization or `p = 2` for \f$ L_2 \f$ - normalization or a custom one.
     * @param eps Parameter \f$ \epsilon \f$ to prevent a division by zero.
     * @param across_spatial If true, normalize an input across all non-batch dimensions.
     *                       Otherwise normalize an every channel separately.
     *
     * Across spatial:
     * @f[
     * norm = \sqrt[p]{\epsilon + \sum_{x, y, c} |src(x, y, c)|^p } \\
     * dst(x, y, c) = \frac{ src(x, y, c) }{norm}
     * @f]
     *
     * Channel wise normalization:
     * @f[
     * norm(c) = \sqrt[p]{\epsilon + \sum_{x, y} |src(x, y, c)|^p } \\
     * dst(x, y, c) = \frac{ src(x, y, c) }{norm(c)}
     * @f]
     *
     * Where `x, y` - spatial coordinates, `c` - channel.
     *
     * An every sample in the batch is normalized separately. Optionally,
     * output is scaled by the trained parameters.
     */
    class CV_EXPORTS NormalizeBBoxLayer : public Layer
    {
    public:
        float pnorm, epsilon;
        CV_DEPRECATED_EXTERNAL bool acrossSpatial;

        static Ptr<NormalizeBBoxLayer> create(const LayerParams& params);
    };

    /**
     * @brief Resize input 4-dimensional blob by nearest neighbor or bilinear strategy.
     *
     * Layer is used to support TensorFlow's resize_nearest_neighbor and resize_bilinear ops.
     */
    class CV_EXPORTS ResizeLayer : public Layer
    {
    public:
        static Ptr<ResizeLayer> create(const LayerParams& params);
    };

    /**
     * @brief Bilinear resize layer from https://github.com/cdmh/deeplab-public-ver2
     *
     * It differs from @ref ResizeLayer in output shape and resize scales computations.
     */
    class CV_EXPORTS InterpLayer : public Layer
    {
    public:
        static Ptr<Layer> create(const LayerParams& params);
    };

    class CV_EXPORTS ProposalLayer : public Layer
    {
    public:
        static Ptr<ProposalLayer> create(const LayerParams& params);
    };

    class CV_EXPORTS CropAndResizeLayer : public Layer
    {
    public:
        static Ptr<Layer> create(const LayerParams& params);
    };

//! @}
//! @}
CV__DNN_INLINE_NS_END
}
}
#endif