hex_float.h 38.6 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078
// Copyright (c) 2015-2016 The Khronos Group Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#ifndef LIBSPIRV_UTIL_HEX_FLOAT_H_
#define LIBSPIRV_UTIL_HEX_FLOAT_H_

#include <cassert>
#include <cctype>
#include <cmath>
#include <cstdint>
#include <iomanip>
#include <limits>
#include <sstream>

#if defined(_MSC_VER) && _MSC_VER < 1800
namespace std {
bool isnan(double f)
{
  return ::_isnan(f) != 0;
}
bool isinf(double f)
{
  return ::_finite(f) == 0;
}
}
#endif

#include "bitutils.h"

namespace spvutils {

class Float16 {
 public:
  Float16(uint16_t v) : val(v) {}
  Float16() {}
  static bool isNan(const Float16& val) {
    return ((val.val & 0x7C00) == 0x7C00) && ((val.val & 0x3FF) != 0);
  }
  // Returns true if the given value is any kind of infinity.
  static bool isInfinity(const Float16& val) {
    return ((val.val & 0x7C00) == 0x7C00) && ((val.val & 0x3FF) == 0);
  }
  Float16(const Float16& other) { val = other.val; }
  uint16_t get_value() const { return val; }

  // Returns the maximum normal value.
  static Float16 max() { return Float16(0x7bff); }
  // Returns the lowest normal value.
  static Float16 lowest() { return Float16(0xfbff); }

 private:
  uint16_t val;
};

// To specialize this type, you must override uint_type to define
// an unsigned integer that can fit your floating point type.
// You must also add a isNan function that returns true if
// a value is Nan.
template <typename T>
struct FloatProxyTraits {
  typedef void uint_type;
};

template <>
struct FloatProxyTraits<float> {
  typedef uint32_t uint_type;
  static bool isNan(float f) { return std::isnan(f); }
  // Returns true if the given value is any kind of infinity.
  static bool isInfinity(float f) { return std::isinf(f); }
  // Returns the maximum normal value.
  static float max() { return std::numeric_limits<float>::max(); }
  // Returns the lowest normal value.
  static float lowest() { return std::numeric_limits<float>::lowest(); }
};

template <>
struct FloatProxyTraits<double> {
  typedef uint64_t uint_type;
  static bool isNan(double f) { return std::isnan(f); }
  // Returns true if the given value is any kind of infinity.
  static bool isInfinity(double f) { return std::isinf(f); }
  // Returns the maximum normal value.
  static double max() { return std::numeric_limits<double>::max(); }
  // Returns the lowest normal value.
  static double lowest() { return std::numeric_limits<double>::lowest(); }
};

template <>
struct FloatProxyTraits<Float16> {
  typedef uint16_t uint_type;
  static bool isNan(Float16 f) { return Float16::isNan(f); }
  // Returns true if the given value is any kind of infinity.
  static bool isInfinity(Float16 f) { return Float16::isInfinity(f); }
  // Returns the maximum normal value.
  static Float16 max() { return Float16::max(); }
  // Returns the lowest normal value.
  static Float16 lowest() { return Float16::lowest(); }
};

// Since copying a floating point number (especially if it is NaN)
// does not guarantee that bits are preserved, this class lets us
// store the type and use it as a float when necessary.
template <typename T>
class FloatProxy {
 public:
  typedef typename FloatProxyTraits<T>::uint_type uint_type;

  // Since this is to act similar to the normal floats,
  // do not initialize the data by default.
  FloatProxy() {}

  // Intentionally non-explicit. This is a proxy type so
  // implicit conversions allow us to use it more transparently.
  FloatProxy(T val) { data_ = BitwiseCast<uint_type>(val); }

  // Intentionally non-explicit. This is a proxy type so
  // implicit conversions allow us to use it more transparently.
  FloatProxy(uint_type val) { data_ = val; }

  // This is helpful to have and is guaranteed not to stomp bits.
  FloatProxy<T> operator-() const {
    return static_cast<uint_type>(data_ ^
                                  (uint_type(0x1) << (sizeof(T) * 8 - 1)));
  }

  // Returns the data as a floating point value.
  T getAsFloat() const { return BitwiseCast<T>(data_); }

  // Returns the raw data.
  uint_type data() const { return data_; }

  // Returns true if the value represents any type of NaN.
  bool isNan() { return FloatProxyTraits<T>::isNan(getAsFloat()); }
  // Returns true if the value represents any type of infinity.
  bool isInfinity() { return FloatProxyTraits<T>::isInfinity(getAsFloat()); }

  // Returns the maximum normal value.
  static FloatProxy<T> max() {
    return FloatProxy<T>(FloatProxyTraits<T>::max());
  }
  // Returns the lowest normal value.
  static FloatProxy<T> lowest() {
    return FloatProxy<T>(FloatProxyTraits<T>::lowest());
  }

 private:
  uint_type data_;
};

template <typename T>
bool operator==(const FloatProxy<T>& first, const FloatProxy<T>& second) {
  return first.data() == second.data();
}

// Reads a FloatProxy value as a normal float from a stream.
template <typename T>
std::istream& operator>>(std::istream& is, FloatProxy<T>& value) {
  T float_val;
  is >> float_val;
  value = FloatProxy<T>(float_val);
  return is;
}

// This is an example traits. It is not meant to be used in practice, but will
// be the default for any non-specialized type.
template <typename T>
struct HexFloatTraits {
  // Integer type that can store this hex-float.
  typedef void uint_type;
  // Signed integer type that can store this hex-float.
  typedef void int_type;
  // The numerical type that this HexFloat represents.
  typedef void underlying_type;
  // The type needed to construct the underlying type.
  typedef void native_type;
  // The number of bits that are actually relevant in the uint_type.
  // This allows us to deal with, for example, 24-bit values in a 32-bit
  // integer.
  static const uint32_t num_used_bits = 0;
  // Number of bits that represent the exponent.
  static const uint32_t num_exponent_bits = 0;
  // Number of bits that represent the fractional part.
  static const uint32_t num_fraction_bits = 0;
  // The bias of the exponent. (How much we need to subtract from the stored
  // value to get the correct value.)
  static const uint32_t exponent_bias = 0;
};

// Traits for IEEE float.
// 1 sign bit, 8 exponent bits, 23 fractional bits.
template <>
struct HexFloatTraits<FloatProxy<float>> {
  typedef uint32_t uint_type;
  typedef int32_t int_type;
  typedef FloatProxy<float> underlying_type;
  typedef float native_type;
  static const uint_type num_used_bits = 32;
  static const uint_type num_exponent_bits = 8;
  static const uint_type num_fraction_bits = 23;
  static const uint_type exponent_bias = 127;
};

// Traits for IEEE double.
// 1 sign bit, 11 exponent bits, 52 fractional bits.
template <>
struct HexFloatTraits<FloatProxy<double>> {
  typedef uint64_t uint_type;
  typedef int64_t int_type;
  typedef FloatProxy<double> underlying_type;
  typedef double native_type;
  static const uint_type num_used_bits = 64;
  static const uint_type num_exponent_bits = 11;
  static const uint_type num_fraction_bits = 52;
  static const uint_type exponent_bias = 1023;
};

// Traits for IEEE half.
// 1 sign bit, 5 exponent bits, 10 fractional bits.
template <>
struct HexFloatTraits<FloatProxy<Float16>> {
  typedef uint16_t uint_type;
  typedef int16_t int_type;
  typedef uint16_t underlying_type;
  typedef uint16_t native_type;
  static const uint_type num_used_bits = 16;
  static const uint_type num_exponent_bits = 5;
  static const uint_type num_fraction_bits = 10;
  static const uint_type exponent_bias = 15;
};

enum round_direction {
  kRoundToZero,
  kRoundToNearestEven,
  kRoundToPositiveInfinity,
  kRoundToNegativeInfinity
};

// Template class that houses a floating pointer number.
// It exposes a number of constants based on the provided traits to
// assist in interpreting the bits of the value.
template <typename T, typename Traits = HexFloatTraits<T>>
class HexFloat {
 public:
  typedef typename Traits::uint_type uint_type;
  typedef typename Traits::int_type int_type;
  typedef typename Traits::underlying_type underlying_type;
  typedef typename Traits::native_type native_type;

  explicit HexFloat(T f) : value_(f) {}

  T value() const { return value_; }
  void set_value(T f) { value_ = f; }

  // These are all written like this because it is convenient to have
  // compile-time constants for all of these values.

  // Pass-through values to save typing.
  static const uint32_t num_used_bits = Traits::num_used_bits;
  static const uint32_t exponent_bias = Traits::exponent_bias;
  static const uint32_t num_exponent_bits = Traits::num_exponent_bits;
  static const uint32_t num_fraction_bits = Traits::num_fraction_bits;

  // Number of bits to shift left to set the highest relevant bit.
  static const uint32_t top_bit_left_shift = num_used_bits - 1;
  // How many nibbles (hex characters) the fractional part takes up.
  static const uint32_t fraction_nibbles = (num_fraction_bits + 3) / 4;
  // If the fractional part does not fit evenly into a hex character (4-bits)
  // then we have to left-shift to get rid of leading 0s. This is the amount
  // we have to shift (might be 0).
  static const uint32_t num_overflow_bits =
      fraction_nibbles * 4 - num_fraction_bits;

  // The representation of the fraction, not the actual bits. This
  // includes the leading bit that is usually implicit.
  static const uint_type fraction_represent_mask =
      spvutils::SetBits<uint_type, 0,
                        num_fraction_bits + num_overflow_bits>::get;

  // The topmost bit in the nibble-aligned fraction.
  static const uint_type fraction_top_bit =
      uint_type(1) << (num_fraction_bits + num_overflow_bits - 1);

  // The least significant bit in the exponent, which is also the bit
  // immediately to the left of the significand.
  static const uint_type first_exponent_bit = uint_type(1)
                                              << (num_fraction_bits);

  // The mask for the encoded fraction. It does not include the
  // implicit bit.
  static const uint_type fraction_encode_mask =
      spvutils::SetBits<uint_type, 0, num_fraction_bits>::get;

  // The bit that is used as a sign.
  static const uint_type sign_mask = uint_type(1) << top_bit_left_shift;

  // The bits that represent the exponent.
  static const uint_type exponent_mask =
      spvutils::SetBits<uint_type, num_fraction_bits, num_exponent_bits>::get;

  // How far left the exponent is shifted.
  static const uint32_t exponent_left_shift = num_fraction_bits;

  // How far from the right edge the fraction is shifted.
  static const uint32_t fraction_right_shift =
      static_cast<uint32_t>(sizeof(uint_type) * 8) - num_fraction_bits;

  // The maximum representable unbiased exponent.
  static const int_type max_exponent =
      (exponent_mask >> num_fraction_bits) - exponent_bias;
  // The minimum representable exponent for normalized numbers.
  static const int_type min_exponent = -static_cast<int_type>(exponent_bias);

  // Returns the bits associated with the value.
  uint_type getBits() const { return spvutils::BitwiseCast<uint_type>(value_); }

  // Returns the bits associated with the value, without the leading sign bit.
  uint_type getUnsignedBits() const {
    return static_cast<uint_type>(spvutils::BitwiseCast<uint_type>(value_) &
                                  ~sign_mask);
  }

  // Returns the bits associated with the exponent, shifted to start at the
  // lsb of the type.
  const uint_type getExponentBits() const {
    return static_cast<uint_type>((getBits() & exponent_mask) >>
                                  num_fraction_bits);
  }

  // Returns the exponent in unbiased form. This is the exponent in the
  // human-friendly form.
  const int_type getUnbiasedExponent() const {
    return static_cast<int_type>(getExponentBits() - exponent_bias);
  }

  // Returns just the significand bits from the value.
  const uint_type getSignificandBits() const {
    return getBits() & fraction_encode_mask;
  }

  // If the number was normalized, returns the unbiased exponent.
  // If the number was denormal, normalize the exponent first.
  const int_type getUnbiasedNormalizedExponent() const {
    if ((getBits() & ~sign_mask) == 0) {  // special case if everything is 0
      return 0;
    }
    int_type exp = getUnbiasedExponent();
    if (exp == min_exponent) {  // We are in denorm land.
      uint_type significand_bits = getSignificandBits();
      while ((significand_bits & (first_exponent_bit >> 1)) == 0) {
        significand_bits = static_cast<uint_type>(significand_bits << 1);
        exp = static_cast<int_type>(exp - 1);
      }
      significand_bits &= fraction_encode_mask;
    }
    return exp;
  }

  // Returns the signficand after it has been normalized.
  const uint_type getNormalizedSignificand() const {
    int_type unbiased_exponent = getUnbiasedNormalizedExponent();
    uint_type significand = getSignificandBits();
    for (int_type i = unbiased_exponent; i <= min_exponent; ++i) {
      significand = static_cast<uint_type>(significand << 1);
    }
    significand &= fraction_encode_mask;
    return significand;
  }

  // Returns true if this number represents a negative value.
  bool isNegative() const { return (getBits() & sign_mask) != 0; }

  // Sets this HexFloat from the individual components.
  // Note this assumes EVERY significand is normalized, and has an implicit
  // leading one. This means that the only way that this method will set 0,
  // is if you set a number so denormalized that it underflows.
  // Do not use this method with raw bits extracted from a subnormal number,
  // since subnormals do not have an implicit leading 1 in the significand.
  // The significand is also expected to be in the
  // lowest-most num_fraction_bits of the uint_type.
  // The exponent is expected to be unbiased, meaning an exponent of
  // 0 actually means 0.
  // If underflow_round_up is set, then on underflow, if a number is non-0
  // and would underflow, we round up to the smallest denorm.
  void setFromSignUnbiasedExponentAndNormalizedSignificand(
      bool negative, int_type exponent, uint_type significand,
      bool round_denorm_up) {
    bool significand_is_zero = significand == 0;

    if (exponent <= min_exponent) {
      // If this was denormalized, then we have to shift the bit on, meaning
      // the significand is not zero.
      significand_is_zero = false;
      significand |= first_exponent_bit;
      significand = static_cast<uint_type>(significand >> 1);
    }

    while (exponent < min_exponent) {
      significand = static_cast<uint_type>(significand >> 1);
      ++exponent;
    }

    if (exponent == min_exponent) {
      if (significand == 0 && !significand_is_zero && round_denorm_up) {
        significand = static_cast<uint_type>(0x1);
      }
    }

    uint_type new_value = 0;
    if (negative) {
      new_value = static_cast<uint_type>(new_value | sign_mask);
    }
    exponent = static_cast<int_type>(exponent + exponent_bias);
    assert(exponent >= 0);

    // put it all together
    exponent = static_cast<uint_type>((exponent << exponent_left_shift) &
                                      exponent_mask);
    significand = static_cast<uint_type>(significand & fraction_encode_mask);
    new_value = static_cast<uint_type>(new_value | (exponent | significand));
    value_ = BitwiseCast<T>(new_value);
  }

  // Increments the significand of this number by the given amount.
  // If this would spill the significand into the implicit bit,
  // carry is set to true and the significand is shifted to fit into
  // the correct location, otherwise carry is set to false.
  // All significands and to_increment are assumed to be within the bounds
  // for a valid significand.
  static uint_type incrementSignificand(uint_type significand,
                                        uint_type to_increment, bool* carry) {
    significand = static_cast<uint_type>(significand + to_increment);
    *carry = false;
    if (significand & first_exponent_bit) {
      *carry = true;
      // The implicit 1-bit will have carried, so we should zero-out the
      // top bit and shift back.
      significand = static_cast<uint_type>(significand & ~first_exponent_bit);
      significand = static_cast<uint_type>(significand >> 1);
    }
    return significand;
  }

  // These exist because MSVC throws warnings on negative right-shifts
  // even if they are not going to be executed. Eg:
  // constant_number < 0? 0: constant_number
  // These convert the negative left-shifts into right shifts.

  template <typename int_type>
  uint_type negatable_left_shift(int_type N, uint_type val)
  {
    if(N >= 0)
      return val << N;

    return val >> -N;
  }

  template <typename int_type>
  uint_type negatable_right_shift(int_type N, uint_type val)
  {
    if(N >= 0)
      return val >> N;

    return val << -N;
  }

  // Returns the significand, rounded to fit in a significand in
  // other_T. This is shifted so that the most significant
  // bit of the rounded number lines up with the most significant bit
  // of the returned significand.
  template <typename other_T>
  typename other_T::uint_type getRoundedNormalizedSignificand(
      round_direction dir, bool* carry_bit) {
    typedef typename other_T::uint_type other_uint_type;
    static const int_type num_throwaway_bits =
        static_cast<int_type>(num_fraction_bits) -
        static_cast<int_type>(other_T::num_fraction_bits);

    static const uint_type last_significant_bit =
        (num_throwaway_bits < 0)
            ? 0
            : negatable_left_shift(num_throwaway_bits, 1u);
    static const uint_type first_rounded_bit =
        (num_throwaway_bits < 1)
            ? 0
            : negatable_left_shift(num_throwaway_bits - 1, 1u);

    static const uint_type throwaway_mask_bits =
        num_throwaway_bits > 0 ? num_throwaway_bits : 0;
    static const uint_type throwaway_mask =
        spvutils::SetBits<uint_type, 0, throwaway_mask_bits>::get;

    *carry_bit = false;
    other_uint_type out_val = 0;
    uint_type significand = getNormalizedSignificand();
    // If we are up-casting, then we just have to shift to the right location.
    if (num_throwaway_bits <= 0) {
      out_val = static_cast<other_uint_type>(significand);
      uint_type shift_amount = static_cast<uint_type>(-num_throwaway_bits);
      out_val = static_cast<other_uint_type>(out_val << shift_amount);
      return out_val;
    }

    // If every non-representable bit is 0, then we don't have any casting to
    // do.
    if ((significand & throwaway_mask) == 0) {
      return static_cast<other_uint_type>(
          negatable_right_shift(num_throwaway_bits, significand));
    }

    bool round_away_from_zero = false;
    // We actually have to narrow the significand here, so we have to follow the
    // rounding rules.
    switch (dir) {
      case kRoundToZero:
        break;
      case kRoundToPositiveInfinity:
        round_away_from_zero = !isNegative();
        break;
      case kRoundToNegativeInfinity:
        round_away_from_zero = isNegative();
        break;
      case kRoundToNearestEven:
        // Have to round down, round bit is 0
        if ((first_rounded_bit & significand) == 0) {
          break;
        }
        if (((significand & throwaway_mask) & ~first_rounded_bit) != 0) {
          // If any subsequent bit of the rounded portion is non-0 then we round
          // up.
          round_away_from_zero = true;
          break;
        }
        // We are exactly half-way between 2 numbers, pick even.
        if ((significand & last_significant_bit) != 0) {
          // 1 for our last bit, round up.
          round_away_from_zero = true;
          break;
        }
        break;
    }

    if (round_away_from_zero) {
      return static_cast<other_uint_type>(
          negatable_right_shift(num_throwaway_bits, incrementSignificand(
              significand, last_significant_bit, carry_bit)));
    } else {
      return static_cast<other_uint_type>(
          negatable_right_shift(num_throwaway_bits, significand));
    }
  }

  // Casts this value to another HexFloat. If the cast is widening,
  // then round_dir is ignored. If the cast is narrowing, then
  // the result is rounded in the direction specified.
  // This number will retain Nan and Inf values.
  // It will also saturate to Inf if the number overflows, and
  // underflow to (0 or min depending on rounding) if the number underflows.
  template <typename other_T>
  void castTo(other_T& other, round_direction round_dir) {
    other = other_T(static_cast<typename other_T::native_type>(0));
    bool negate = isNegative();
    if (getUnsignedBits() == 0) {
      if (negate) {
        other.set_value(-other.value());
      }
      return;
    }
    uint_type significand = getSignificandBits();
    bool carried = false;
    typename other_T::uint_type rounded_significand =
        getRoundedNormalizedSignificand<other_T>(round_dir, &carried);

    int_type exponent = getUnbiasedExponent();
    if (exponent == min_exponent) {
      // If we are denormal, normalize the exponent, so that we can encode
      // easily.
      exponent = static_cast<int_type>(exponent + 1);
      for (uint_type check_bit = first_exponent_bit >> 1; check_bit != 0;
           check_bit = static_cast<uint_type>(check_bit >> 1)) {
        exponent = static_cast<int_type>(exponent - 1);
        if (check_bit & significand) break;
      }
    }

    bool is_nan =
        (getBits() & exponent_mask) == exponent_mask && significand != 0;
    bool is_inf =
        !is_nan &&
        ((exponent + carried) > static_cast<int_type>(other_T::exponent_bias) ||
         (significand == 0 && (getBits() & exponent_mask) == exponent_mask));

    // If we are Nan or Inf we should pass that through.
    if (is_inf) {
      other.set_value(BitwiseCast<typename other_T::underlying_type>(
          static_cast<typename other_T::uint_type>(
              (negate ? other_T::sign_mask : 0) | other_T::exponent_mask)));
      return;
    }
    if (is_nan) {
      typename other_T::uint_type shifted_significand;
      shifted_significand = static_cast<typename other_T::uint_type>(
          negatable_left_shift(
              static_cast<int_type>(other_T::num_fraction_bits) -
              static_cast<int_type>(num_fraction_bits), significand));

      // We are some sort of Nan. We try to keep the bit-pattern of the Nan
      // as close as possible. If we had to shift off bits so we are 0, then we
      // just set the last bit.
      other.set_value(BitwiseCast<typename other_T::underlying_type>(
          static_cast<typename other_T::uint_type>(
              (negate ? other_T::sign_mask : 0) | other_T::exponent_mask |
              (shifted_significand == 0 ? 0x1 : shifted_significand))));
      return;
    }

    bool round_underflow_up =
        isNegative() ? round_dir == kRoundToNegativeInfinity
                     : round_dir == kRoundToPositiveInfinity;
    typedef typename other_T::int_type other_int_type;
    // setFromSignUnbiasedExponentAndNormalizedSignificand will
    // zero out any underflowing value (but retain the sign).
    other.setFromSignUnbiasedExponentAndNormalizedSignificand(
        negate, static_cast<other_int_type>(exponent), rounded_significand,
        round_underflow_up);
    return;
  }

 private:
  T value_;

  static_assert(num_used_bits ==
                    Traits::num_exponent_bits + Traits::num_fraction_bits + 1,
                "The number of bits do not fit");
  static_assert(sizeof(T) == sizeof(uint_type), "The type sizes do not match");
};

// Returns 4 bits represented by the hex character.
inline uint8_t get_nibble_from_character(int character) {
  const char* dec = "0123456789";
  const char* lower = "abcdef";
  const char* upper = "ABCDEF";
  const char* p = nullptr;
  if ((p = strchr(dec, character))) {
    return static_cast<uint8_t>(p - dec);
  } else if ((p = strchr(lower, character))) {
    return static_cast<uint8_t>(p - lower + 0xa);
  } else if ((p = strchr(upper, character))) {
    return static_cast<uint8_t>(p - upper + 0xa);
  }

  assert(false && "This was called with a non-hex character");
  return 0;
}

// Outputs the given HexFloat to the stream.
template <typename T, typename Traits>
std::ostream& operator<<(std::ostream& os, const HexFloat<T, Traits>& value) {
  typedef HexFloat<T, Traits> HF;
  typedef typename HF::uint_type uint_type;
  typedef typename HF::int_type int_type;

  static_assert(HF::num_used_bits != 0,
                "num_used_bits must be non-zero for a valid float");
  static_assert(HF::num_exponent_bits != 0,
                "num_exponent_bits must be non-zero for a valid float");
  static_assert(HF::num_fraction_bits != 0,
                "num_fractin_bits must be non-zero for a valid float");

  const uint_type bits = spvutils::BitwiseCast<uint_type>(value.value());
  const char* const sign = (bits & HF::sign_mask) ? "-" : "";
  const uint_type exponent = static_cast<uint_type>(
      (bits & HF::exponent_mask) >> HF::num_fraction_bits);

  uint_type fraction = static_cast<uint_type>((bits & HF::fraction_encode_mask)
                                              << HF::num_overflow_bits);

  const bool is_zero = exponent == 0 && fraction == 0;
  const bool is_denorm = exponent == 0 && !is_zero;

  // exponent contains the biased exponent we have to convert it back into
  // the normal range.
  int_type int_exponent = static_cast<int_type>(exponent - HF::exponent_bias);
  // If the number is all zeros, then we actually have to NOT shift the
  // exponent.
  int_exponent = is_zero ? 0 : int_exponent;

  // If we are denorm, then start shifting, and decreasing the exponent until
  // our leading bit is 1.

  if (is_denorm) {
    while ((fraction & HF::fraction_top_bit) == 0) {
      fraction = static_cast<uint_type>(fraction << 1);
      int_exponent = static_cast<int_type>(int_exponent - 1);
    }
    // Since this is denormalized, we have to consume the leading 1 since it
    // will end up being implicit.
    fraction = static_cast<uint_type>(fraction << 1);  // eat the leading 1
    fraction &= HF::fraction_represent_mask;
  }

  uint_type fraction_nibbles = HF::fraction_nibbles;
  // We do not have to display any trailing 0s, since this represents the
  // fractional part.
  while (fraction_nibbles > 0 && (fraction & 0xF) == 0) {
    // Shift off any trailing values;
    fraction = static_cast<uint_type>(fraction >> 4);
    --fraction_nibbles;
  }

  const auto saved_flags = os.flags();
  const auto saved_fill = os.fill();

  os << sign << "0x" << (is_zero ? '0' : '1');
  if (fraction_nibbles) {
    // Make sure to keep the leading 0s in place, since this is the fractional
    // part.
    os << "." << std::setw(static_cast<int>(fraction_nibbles))
       << std::setfill('0') << std::hex << fraction;
  }
  os << "p" << std::dec << (int_exponent >= 0 ? "+" : "") << int_exponent;

  os.flags(saved_flags);
  os.fill(saved_fill);

  return os;
}

// Returns true if negate_value is true and the next character on the
// input stream is a plus or minus sign.  In that case we also set the fail bit
// on the stream and set the value to the zero value for its type.
template <typename T, typename Traits>
inline bool RejectParseDueToLeadingSign(std::istream& is, bool negate_value,
                                        HexFloat<T, Traits>& value) {
  if (negate_value) {
    auto next_char = is.peek();
    if (next_char == '-' || next_char == '+') {
      // Fail the parse.  Emulate standard behaviour by setting the value to
      // the zero value, and set the fail bit on the stream.
      value = HexFloat<T, Traits>(typename HexFloat<T, Traits>::uint_type(0));
      is.setstate(std::ios_base::failbit);
      return true;
    }
  }
  return false;
}

// Parses a floating point number from the given stream and stores it into the
// value parameter.
// If negate_value is true then the number may not have a leading minus or
// plus, and if it successfully parses, then the number is negated before
// being stored into the value parameter.
// If the value cannot be correctly parsed or overflows the target floating
// point type, then set the fail bit on the stream.
// TODO(dneto): Promise C++11 standard behavior in how the value is set in
// the error case, but only after all target platforms implement it correctly.
// In particular, the Microsoft C++ runtime appears to be out of spec.
template <typename T, typename Traits>
inline std::istream& ParseNormalFloat(std::istream& is, bool negate_value,
                                      HexFloat<T, Traits>& value) {
  if (RejectParseDueToLeadingSign(is, negate_value, value)) {
    return is;
  }
  T val;
  is >> val;
  if (negate_value) {
    val = -val;
  }
  value.set_value(val);
  // In the failure case, map -0.0 to 0.0.
  if (is.fail() && value.getUnsignedBits() == 0u) {
    value = HexFloat<T, Traits>(typename HexFloat<T, Traits>::uint_type(0));
  }
  if (val.isInfinity()) {
    // Fail the parse.  Emulate standard behaviour by setting the value to
    // the closest normal value, and set the fail bit on the stream.
    value.set_value((value.isNegative() || negate_value) ? T::lowest()
                                                         : T::max());
    is.setstate(std::ios_base::failbit);
  }
  return is;
}

// Specialization of ParseNormalFloat for FloatProxy<Float16> values.
// This will parse the float as it were a 32-bit floating point number,
// and then round it down to fit into a Float16 value.
// The number is rounded towards zero.
// If negate_value is true then the number may not have a leading minus or
// plus, and if it successfully parses, then the number is negated before
// being stored into the value parameter.
// If the value cannot be correctly parsed or overflows the target floating
// point type, then set the fail bit on the stream.
// TODO(dneto): Promise C++11 standard behavior in how the value is set in
// the error case, but only after all target platforms implement it correctly.
// In particular, the Microsoft C++ runtime appears to be out of spec.
template <>
inline std::istream&
ParseNormalFloat<FloatProxy<Float16>, HexFloatTraits<FloatProxy<Float16>>>(
    std::istream& is, bool negate_value,
    HexFloat<FloatProxy<Float16>, HexFloatTraits<FloatProxy<Float16>>>& value) {
  // First parse as a 32-bit float.
  HexFloat<FloatProxy<float>> float_val(0.0f);
  ParseNormalFloat(is, negate_value, float_val);

  // Then convert to 16-bit float, saturating at infinities, and
  // rounding toward zero.
  float_val.castTo(value, kRoundToZero);

  // Overflow on 16-bit behaves the same as for 32- and 64-bit: set the
  // fail bit and set the lowest or highest value.
  if (Float16::isInfinity(value.value().getAsFloat())) {
    value.set_value(value.isNegative() ? Float16::lowest() : Float16::max());
    is.setstate(std::ios_base::failbit);
  }
  return is;
}

// Reads a HexFloat from the given stream.
// If the float is not encoded as a hex-float then it will be parsed
// as a regular float.
// This may fail if your stream does not support at least one unget.
// Nan values can be encoded with "0x1.<not zero>p+exponent_bias".
// This would normally overflow a float and round to
// infinity but this special pattern is the exact representation for a NaN,
// and therefore is actually encoded as the correct NaN. To encode inf,
// either 0x0p+exponent_bias can be specified or any exponent greater than
// exponent_bias.
// Examples using IEEE 32-bit float encoding.
//    0x1.0p+128 (+inf)
//    -0x1.0p-128 (-inf)
//
//    0x1.1p+128 (+Nan)
//    -0x1.1p+128 (-Nan)
//
//    0x1p+129 (+inf)
//    -0x1p+129 (-inf)
template <typename T, typename Traits>
std::istream& operator>>(std::istream& is, HexFloat<T, Traits>& value) {
  using HF = HexFloat<T, Traits>;
  using uint_type = typename HF::uint_type;
  using int_type = typename HF::int_type;

  value.set_value(static_cast<typename HF::native_type>(0.f));

  if (is.flags() & std::ios::skipws) {
    // If the user wants to skip whitespace , then we should obey that.
    while (std::isspace(is.peek())) {
      is.get();
    }
  }

  auto next_char = is.peek();
  bool negate_value = false;

  if (next_char != '-' && next_char != '0') {
    return ParseNormalFloat(is, negate_value, value);
  }

  if (next_char == '-') {
    negate_value = true;
    is.get();
    next_char = is.peek();
  }

  if (next_char == '0') {
    is.get();  // We may have to unget this.
    auto maybe_hex_start = is.peek();
    if (maybe_hex_start != 'x' && maybe_hex_start != 'X') {
      is.unget();
      return ParseNormalFloat(is, negate_value, value);
    } else {
      is.get();  // Throw away the 'x';
    }
  } else {
    return ParseNormalFloat(is, negate_value, value);
  }

  // This "looks" like a hex-float so treat it as one.
  bool seen_p = false;
  bool seen_dot = false;
  uint_type fraction_index = 0;

  uint_type fraction = 0;
  int_type exponent = HF::exponent_bias;

  // Strip off leading zeros so we don't have to special-case them later.
  while ((next_char = is.peek()) == '0') {
    is.get();
  }

  bool is_denorm =
      true;  // Assume denorm "representation" until we hear otherwise.
             // NB: This does not mean the value is actually denorm,
             // it just means that it was written 0.
  bool bits_written = false;  // Stays false until we write a bit.
  while (!seen_p && !seen_dot) {
    // Handle characters that are left of the fractional part.
    if (next_char == '.') {
      seen_dot = true;
    } else if (next_char == 'p') {
      seen_p = true;
    } else if (::isxdigit(next_char)) {
      // We know this is not denormalized since we have stripped all leading
      // zeroes and we are not a ".".
      is_denorm = false;
      int number = get_nibble_from_character(next_char);
      for (int i = 0; i < 4; ++i, number <<= 1) {
        uint_type write_bit = (number & 0x8) ? 0x1 : 0x0;
        if (bits_written) {
          // If we are here the bits represented belong in the fractional
          // part of the float, and we have to adjust the exponent accordingly.
          fraction = static_cast<uint_type>(
              fraction |
              static_cast<uint_type>(
                  write_bit << (HF::top_bit_left_shift - fraction_index++)));
          exponent = static_cast<int_type>(exponent + 1);
        }
        bits_written |= write_bit != 0;
      }
    } else {
      // We have not found our exponent yet, so we have to fail.
      is.setstate(std::ios::failbit);
      return is;
    }
    is.get();
    next_char = is.peek();
  }
  bits_written = false;
  while (seen_dot && !seen_p) {
    // Handle only fractional parts now.
    if (next_char == 'p') {
      seen_p = true;
    } else if (::isxdigit(next_char)) {
      int number = get_nibble_from_character(next_char);
      for (int i = 0; i < 4; ++i, number <<= 1) {
        uint_type write_bit = (number & 0x8) ? 0x01 : 0x00;
        bits_written |= write_bit != 0;
        if (is_denorm && !bits_written) {
          // Handle modifying the exponent here this way we can handle
          // an arbitrary number of hex values without overflowing our
          // integer.
          exponent = static_cast<int_type>(exponent - 1);
        } else {
          fraction = static_cast<uint_type>(
              fraction |
              static_cast<uint_type>(
                  write_bit << (HF::top_bit_left_shift - fraction_index++)));
        }
      }
    } else {
      // We still have not found our 'p' exponent yet, so this is not a valid
      // hex-float.
      is.setstate(std::ios::failbit);
      return is;
    }
    is.get();
    next_char = is.peek();
  }

  bool seen_sign = false;
  int8_t exponent_sign = 1;
  int_type written_exponent = 0;
  while (true) {
    if ((next_char == '-' || next_char == '+')) {
      if (seen_sign) {
        is.setstate(std::ios::failbit);
        return is;
      }
      seen_sign = true;
      exponent_sign = (next_char == '-') ? -1 : 1;
    } else if (::isdigit(next_char)) {
      // Hex-floats express their exponent as decimal.
      written_exponent = static_cast<int_type>(written_exponent * 10);
      written_exponent =
          static_cast<int_type>(written_exponent + (next_char - '0'));
    } else {
      break;
    }
    is.get();
    next_char = is.peek();
  }

  written_exponent = static_cast<int_type>(written_exponent * exponent_sign);
  exponent = static_cast<int_type>(exponent + written_exponent);

  bool is_zero = is_denorm && (fraction == 0);
  if (is_denorm && !is_zero) {
    fraction = static_cast<uint_type>(fraction << 1);
    exponent = static_cast<int_type>(exponent - 1);
  } else if (is_zero) {
    exponent = 0;
  }

  if (exponent <= 0 && !is_zero) {
    fraction = static_cast<uint_type>(fraction >> 1);
    fraction |= static_cast<uint_type>(1) << HF::top_bit_left_shift;
  }

  fraction = (fraction >> HF::fraction_right_shift) & HF::fraction_encode_mask;

  const int_type max_exponent =
      SetBits<uint_type, 0, HF::num_exponent_bits>::get;

  // Handle actual denorm numbers
  while (exponent < 0 && !is_zero) {
    fraction = static_cast<uint_type>(fraction >> 1);
    exponent = static_cast<int_type>(exponent + 1);

    fraction &= HF::fraction_encode_mask;
    if (fraction == 0) {
      // We have underflowed our fraction. We should clamp to zero.
      is_zero = true;
      exponent = 0;
    }
  }

  // We have overflowed so we should be inf/-inf.
  if (exponent > max_exponent) {
    exponent = max_exponent;
    fraction = 0;
  }

  uint_type output_bits = static_cast<uint_type>(
      static_cast<uint_type>(negate_value ? 1 : 0) << HF::top_bit_left_shift);
  output_bits |= fraction;

  uint_type shifted_exponent = static_cast<uint_type>(
      static_cast<uint_type>(exponent << HF::exponent_left_shift) &
      HF::exponent_mask);
  output_bits |= shifted_exponent;

  T output_float = spvutils::BitwiseCast<T>(output_bits);
  value.set_value(output_float);

  return is;
}

// Writes a FloatProxy value to a stream.
// Zero and normal numbers are printed in the usual notation, but with
// enough digits to fully reproduce the value.  Other values (subnormal,
// NaN, and infinity) are printed as a hex float.
template <typename T>
std::ostream& operator<<(std::ostream& os, const FloatProxy<T>& value) {
  auto float_val = value.getAsFloat();
  switch (std::fpclassify(float_val)) {
    case FP_ZERO:
    case FP_NORMAL: {
      auto saved_precision = os.precision();
      os.precision(std::numeric_limits<T>::digits10);
      os << float_val;
      os.precision(saved_precision);
    } break;
    default:
      os << HexFloat<FloatProxy<T>>(value);
      break;
  }
  return os;
}

template <>
inline std::ostream& operator<<<Float16>(std::ostream& os,
                                         const FloatProxy<Float16>& value) {
  os << HexFloat<FloatProxy<Float16>>(value);
  return os;
}
}

#endif  // LIBSPIRV_UTIL_HEX_FLOAT_H_