1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2018-2019 Intel Corporation
#ifndef OPENCV_GAPI_GCPUKERNEL_HPP
#define OPENCV_GAPI_GCPUKERNEL_HPP
#include <functional>
#include <unordered_map>
#include <utility>
#include <vector>
#include <opencv2/core/mat.hpp>
#include <opencv2/gapi/gcommon.hpp>
#include <opencv2/gapi/gkernel.hpp>
#include <opencv2/gapi/garg.hpp>
#include <opencv2/gapi/own/convert.hpp> //to_ocv
#include <opencv2/gapi/util/compiler_hints.hpp> //suppress_unused_warning
#include <opencv2/gapi/util/util.hpp>
// FIXME: namespace scheme for backends?
namespace cv {
namespace gimpl
{
// Forward-declare an internal class
class GCPUExecutable;
} // namespace gimpl
namespace gapi
{
namespace cpu
{
/**
* \addtogroup gapi_std_backends
* @{
*
* @brief G-API backends available in this OpenCV version
*
* G-API backends play a corner stone role in G-API execution
* stack. Every backend is hardware-oriented and thus can run its
* kernels efficiently on the target platform.
*
* Backends are usually "black boxes" for G-API users -- on the API
* side, all backends are represented as different objects of the
* same class cv::gapi::GBackend.
* User can manipulate with backends by specifying which kernels to use.
*
* @sa @ref gapi_hld
*/
/**
* @brief Get a reference to CPU (OpenCV) backend.
*
* This is the default backend in G-API at the moment, providing
* broader functional coverage but losing some graph model
* advantages. Provided mostly for reference and prototyping
* purposes.
*
* @sa gapi_std_backends
*/
GAPI_EXPORTS cv::gapi::GBackend backend();
/** @} */
} // namespace cpu
} // namespace gapi
// Represents arguments which are passed to a wrapped CPU function
// FIXME: put into detail?
class GAPI_EXPORTS GCPUContext
{
public:
// Generic accessor API
template<typename T>
const T& inArg(int input) { return m_args.at(input).get<T>(); }
// Syntax sugar
const cv::gapi::own::Mat& inMat(int input);
cv::gapi::own::Mat& outMatR(int output); // FIXME: Avoid cv::gapi::own::Mat m = ctx.outMatR()
const cv::gapi::own::Scalar& inVal(int input);
cv::gapi::own::Scalar& outValR(int output); // FIXME: Avoid cv::gapi::own::Scalar s = ctx.outValR()
template<typename T> std::vector<T>& outVecR(int output) // FIXME: the same issue
{
return outVecRef(output).wref<T>();
}
protected:
detail::VectorRef& outVecRef(int output);
std::vector<GArg> m_args;
//FIXME: avoid conversion of arguments from internal representaion to OpenCV one on each call
//to OCV kernel. (This can be achieved by a two single time conversions in GCPUExecutable::run,
//once on enter for input and output arguments, and once before return for output arguments only
std::unordered_map<std::size_t, GRunArgP> m_results;
friend class gimpl::GCPUExecutable;
};
class GAPI_EXPORTS GCPUKernel
{
public:
// This function is kernel's execution entry point (does the processing work)
using F = std::function<void(GCPUContext &)>;
GCPUKernel();
explicit GCPUKernel(const F& f);
void apply(GCPUContext &ctx);
protected:
F m_f;
};
// FIXME: This is an ugly ad-hoc imlpementation. TODO: refactor
namespace detail
{
template<class T> struct get_in;
template<> struct get_in<cv::GMat>
{
static cv::Mat get(GCPUContext &ctx, int idx) { return to_ocv(ctx.inMat(idx)); }
};
template<> struct get_in<cv::GMatP>
{
static cv::Mat get(GCPUContext &ctx, int idx) { return get_in<cv::GMat>::get(ctx, idx); }
};
template<> struct get_in<cv::GScalar>
{
static cv::Scalar get(GCPUContext &ctx, int idx) { return to_ocv(ctx.inVal(idx)); }
};
template<typename U> struct get_in<cv::GArray<U> >
{
static const std::vector<U>& get(GCPUContext &ctx, int idx) { return ctx.inArg<VectorRef>(idx).rref<U>(); }
};
template<class T> struct get_in
{
static T get(GCPUContext &ctx, int idx) { return ctx.inArg<T>(idx); }
};
struct tracked_cv_mat{
tracked_cv_mat(cv::gapi::own::Mat& m) : r{to_ocv(m)}, original_data{m.data} {}
cv::Mat r;
uchar* original_data;
operator cv::Mat& (){ return r;}
void validate() const{
if (r.data != original_data)
{
util::throw_error
(std::logic_error
("OpenCV kernel output parameter was reallocated. \n"
"Incorrect meta data was provided ?"));
}
}
};
struct scalar_wrapper
{
scalar_wrapper(cv::gapi::own::Scalar& s) : m_s{cv::gapi::own::to_ocv(s)}, m_org_s(s) {};
operator cv::Scalar& () { return m_s; }
void writeBack() const { m_org_s = to_own(m_s); }
cv::Scalar m_s;
cv::gapi::own::Scalar& m_org_s;
};
template<typename... Outputs>
void postprocess(Outputs&... outs)
{
struct
{
void operator()(tracked_cv_mat* bm) { bm->validate(); }
void operator()(scalar_wrapper* sw) { sw->writeBack(); }
void operator()(...) { }
} validate;
//dummy array to unfold parameter pack
int dummy[] = { 0, (validate(&outs), 0)... };
cv::util::suppress_unused_warning(dummy);
}
template<class T> struct get_out;
template<> struct get_out<cv::GMat>
{
static tracked_cv_mat get(GCPUContext &ctx, int idx)
{
auto& r = ctx.outMatR(idx);
return {r};
}
};
template<> struct get_out<cv::GMatP>
{
static tracked_cv_mat get(GCPUContext &ctx, int idx)
{
return get_out<cv::GMat>::get(ctx, idx);
}
};
template<> struct get_out<cv::GScalar>
{
static scalar_wrapper get(GCPUContext &ctx, int idx)
{
auto& s = ctx.outValR(idx);
return {s};
}
};
template<typename U> struct get_out<cv::GArray<U>>
{
static std::vector<U>& get(GCPUContext &ctx, int idx)
{
return ctx.outVecR<U>(idx);
}
};
template<typename, typename, typename>
struct OCVCallHelper;
// FIXME: probably can be simplified with std::apply or analogue.
template<typename Impl, typename... Ins, typename... Outs>
struct OCVCallHelper<Impl, std::tuple<Ins...>, std::tuple<Outs...> >
{
template<typename... Inputs>
struct call_and_postprocess
{
template<typename... Outputs>
static void call(Inputs&&... ins, Outputs&&... outs)
{
//not using a std::forward on outs is deliberate in order to
//cause compilation error, by tring to bind rvalue references to lvalue references
Impl::run(std::forward<Inputs>(ins)..., outs...);
postprocess(outs...);
}
};
template<int... IIs, int... OIs>
static void call_impl(GCPUContext &ctx, detail::Seq<IIs...>, detail::Seq<OIs...>)
{
//Make sure that OpenCV kernels do not reallocate memory for output parameters
//by comparing it's state (data ptr) before and after the call.
//This is done by converting each output Mat into tracked_cv_mat object, and binding
//them to parameters of ad-hoc function
//Convert own::Scalar to cv::Scalar before call kernel and run kernel
//convert cv::Scalar to own::Scalar after call kernel and write back results
call_and_postprocess<decltype(get_in<Ins>::get(ctx, IIs))...>::call(get_in<Ins>::get(ctx, IIs)..., get_out<Outs>::get(ctx, OIs)...);
}
static void call(GCPUContext &ctx)
{
call_impl(ctx,
typename detail::MkSeq<sizeof...(Ins)>::type(),
typename detail::MkSeq<sizeof...(Outs)>::type());
}
};
} // namespace detail
template<class Impl, class K>
class GCPUKernelImpl: public cv::detail::OCVCallHelper<Impl, typename K::InArgs, typename K::OutArgs>,
public cv::detail::KernelTag
{
using P = detail::OCVCallHelper<Impl, typename K::InArgs, typename K::OutArgs>;
public:
using API = K;
static cv::gapi::GBackend backend() { return cv::gapi::cpu::backend(); }
static cv::GCPUKernel kernel() { return GCPUKernel(&P::call); }
};
#define GAPI_OCV_KERNEL(Name, API) struct Name: public cv::GCPUKernelImpl<Name, API>
} // namespace cv
#endif // OPENCV_GAPI_GCPUKERNEL_HPP